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Incidental encoding of numerosity in visual long-term

memory

Jiaying Zhao and Nicholas B. Turk-Browne

Department of Psychology, Princeton University, Princeton, NJ, USA

The visual system can readily extract numerosity information from brief experi-
ences. This numerical perception is characterized by diminishing accuracy as
numerosity increases, and impaired discrimination for similar quantities and large
magnitudes. Here we assess whether these properties apply more broadly to
numerosity in visual long-term memory. In surprise memory tests, we observed:
Remarkable accuracy in estimating the number of repetitions of an exemplar image
(Experiment 1a), that this accuracy decreased but remained high when estimating
over categories (Experiments 1b and 1c), that numerical discrimination from
memory exhibited psychophysical distance and size effects (Experiment 2), that
these effects may derive from stored representations rather than post hoc
approximation (Experiment 3a), and that they can reflect total elapsed experience
in addition to discrete counts (Experiment 3b). Similar to how numerosity is readily
extracted during visual perception, our results suggest that numerosity is encoded
incidentally in visual long-term memory.

Keywords: Distance effect; Incidental encoding; Numerosity; Size effect; Visual

long-term memory.

The distinction between processes geared towards external sensory input

(perception) and those that operate over internal mental representations

(cognition) is intuitive and historical. However, while the targets of such

processes may be different, their underlying computations may overlap in

meaningful ways. This approach has been pursued in process models of

cognition that emphasize the consequences of perception for memory

(Johnson, 1983; Kolers & Roediger, 1984). As a recent example of this

perspective, the posterior parietal cortex may implement general attentional
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processes involved in searching through both visual input and long-term

memory (Cabeza, Ciaramelli, Olson, & Moscovitch, 2008). Beyond relying

on overlapping neural representations, here we explore one way in which

perceptual and mnemonic processes may share functional properties and

constraints. In particular, we focus on numerical cognition*a topic studied

extensively in the domain of perception, but less so in the domain of

memory.

Numerical perception

The visual system is remarkably good at ‘‘seeing’’ numerical information in

the world. In a typical study of numerical perception, arrays of items (e.g.,

dots) are briefly presented and participants report the number of items in

each display. Several features of this immediate numerical perception have

been discovered based on developmental, behavioural, and neuroscientific

findings (see reviews by Ansari, 2008; Dehaene, Dehaene-Lambertz, &

Cohen, 1998; Feigenson, Dehaene, & Spelke, 2004). Adults are very accurate

and fast at judging small quantities (six or fewer), a process termed

‘‘subitizing’’ (Kaufman, Lord, Reese, & Volkman, 1949). However, for

larger quantities, judgements are less accurate but still quite good, a process

termed ‘‘approximation’’ (Mandler & Shebo, 1982; Trick & Pylyshyn, 1994).

Numerical judgements are subject to Weber’s law: As numerosity increases,

judgements become less and less accurate following a logarithmic function

with fixed Gaussian noise (Izard & Dehaene, 2008). It was initially believed

that there is a single estimation process shared for small and large

numerosities, and that subitizing reflects the high precision for small

numerosity built into Weber’s law (Dehaene & Changeux, 1993; Gallistel

& Gelman, 1991). However, recent evidence has suggested that subitizing

might rely on a separate process dedicated to small numerosity (Dehaene &

Cohen, 1994; Feigenson et al., 2004; Piazza, Mechelli, Butterworth, & Price,

2002; Revkin, Piazza, Izard, Cohen, & Dehaene, 2008).

Numerical perception is often examined in tasks requiring the compar-

ison of numerosities. In such tasks, two displays are briefly presented and

participants judge which display contained more items. When discriminating

between numerosities, performance improves as the numerical distance

between numerosities increases (distance effect; Dehaene, Dupoux, &

Mehler, 1990; Moyer & Landauer, 1967). When distance is held constant,

performance declines as the absolute magnitudes of the two numerosities

increase (size effect; Barth, Kanwisher, & Spelke, 2003; Izard & Dehaene,

2008; Whalen, Gallistel, & Gelman, 1999). Thus, numerical discrimination

tracks the ratio between two numerosities (e.g., Banks, Fujii, &

Kayra-Stuart, 1976; Buckley & Gilman, 1974; Hintzman, Yurko, & Hu,
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1981; Holyoak, 1977; Kosslyn, Murphy, Bemesderfer, & Feinstein, 1977;

Moyer, 1973; Parkman, 1971).

Numerical memory

Long-term memory for numerical information is an important part of

everyday cognition: Have we visited your or my parents more often? How

many books did I borrow from the library? Which bank has the most ATMs

in town? In contrast to immediate perceptual judgements, this kind of

numerical judgement is based on episodic memory aggregated over a longer

timescale. Numerical judgements from long-term memory have previously

been examined in the context of event frequency (Blair & Burton, 1987;

Brown, 1995, 1997; Hasher & Zacks, 1979; Hintzman & Block, 1971;
Howell, 1973; Means & Loftus, 1991, Menon, 1993). In a typical study of

this type, lists of words are studied and some of the words are presented

repeatedly. Later, participants must recall how many times they had seen a

particular word. The corresponding estimates follow a logarithmic function

of actual numerosity, and increase with the spacing between repetitions

(Hintzman, 1969).

Several accounts have been offered to explain such performance: The

strength hypothesis posits that numerical estimates about event frequency
are based on the strength of its memory trace, which is determined by the

number of event repetitions (Hintzman, 1969). The multiple-trace hypothesis

posits that numerical estimates reflect the number of stored memory traces

of an event rather than the strength of any single memory trace (Hintzman &

Block, 1971). Finally, a more recent hypothesis posits that numerical

estimates are influenced by the number of contexts in which events occur

(Brown, 1995, 1997, 2002): A category label (CITY) paired with multiple

contexts (Boston, London, and Cleveland) is judged to have lower numerosity
than one paired with a single context an equal number of times (London,

London, London).

The current study

Since the event frequency literature largely predates the numerical perception

literature, our understanding of how numerosity information is stored and

retrieved from long-term memory may benefit from the approaches that have
been developed for the study of numerical perception. The overall goal of

our study is thus to bridge these two domains, and test the similarities and

differences between numerical judgements from visual long-term memory

(VLTM) and those from immediate visual perception.

Here we consider VLTM to be a type of episodic memory for visual

information that is formed over repeated experiences and persists for an
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extended timescale. Visual short-term memory (VSTM) is certainly im-

portant for numerical perception tasks, where two arrays must be held in

mind and compared, or where a single array is presented briefly and

subsequently tested after a short delay. Memory is also involved in numerical

perception tasks in terms of maintaining task rules, such as stimulus�response

mappings, but such memory is unrelated to the numerosity of particular items.

Our study extends beyond this prior involvement of memory in numerosity

judgements by focusing on VLTM. Indeed, VLTM and VSTM are different

in several ways, including: (1) VLTM has a remarkably large capacity (e.g.,

Brady, Konkle, Alvarez, & Oliva, 2008; Standing, 1973), whereas VSTM is

severely capacity limited to about four items (e.g., Luck & Vogel, 1997); and

(2) VLTM lasts for a long time (at least a week; Shepard, 1967), whereas

VSTM decays rapidly (in about 10 s; Zhang & Luck, 2009).

To our knowledge, this study is the first attempt to apply tools from

numerical perception to the study of VLTM. We examine whether

psychophysical properties of numerical perception*precise estimates of

small quantities, the distance effect, and the size effect*generalize to

VLTM. Importantly, unlike previous studies of numerical perception,

numerosity in our study derives from aggregating over extended time periods

and interruptions by other stimuli. Moreover, in typical numerical percep-

tion tasks, observers know in advance that they will be asked about

numerosity (since they complete multiple trials); in our study, numerosity

is never mentioned until after all stimuli have been encountered, ensuring

that judgements reflect incidental encoding. In addition, we examine

whether numerosity can be tracked for individuals (e.g., an exemplar

repeated multiple times), and for features shared among individuals (e.g., a

category from which multiple exemplars are repeated). Finally, we examine

how numerical judgements are formed in VLTM, such as whether

numerosity is stored directly in memory or calculated post hoc from a set

of retrieved memories.

As an outline, we first test the accuracy of numerical estimates from

VLTM (Experiments 1a, 1b, and 1c); we then test psychophysical properties

of numerical comparison from memory (Experiment 2); and finally we

explore potential mechanisms for how numerical estimates can be generated

from memory (Experiments 3a and 3b). In all cases, numerical estimates are

obtained from a surprise test, after a large number of objects have been

incidentally encoded into VLTM.

EXPERIMENT 1A

The purpose of this experiment is to test the accuracy of unexpected

numerosity judgements from VLTM.
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Method

Participants. Participants in all experiments had normal or corrected-to-

normal vision, and provided informed consent. All experiments were

approved by the Institutional Review Board for human subjects at Princeton
University. In the first three experiments (1a, 1b, and 1c), a total of 60

Princeton University undergraduates (20 per experiment) participated in

exchange for course credit (39 female, mean age �19.3 years).

Materials. Stimuli were chosen from an image set containing 60 object

categories, and 10 exemplar images per category. Categories included types

of animals, plants, and everyday artifacts. To manipulate numerosity, 50

categories were pseudorandomly assigned to a numerosity between 1 and 10
such that each numerosity level was represented by five categories. One

exemplar image was randomly chosen from each of these categories, and was

presented separately the corresponding number of times during encoding.

For example, if the categories dog, bear, car, flower, and horse were chosen at

numerosity level ‘‘3’’, then one exemplar image from each category would be

presented a total of three times, each time intermixed with images from this

and other numerosity levels. There were 10 numerosity levels (1�10), five

categories per level, and each category was presented the corresponding
number of times, resulting in a total of: 5�1�5�2�5�3�5�
4�5�5�5�6�5�7�5�8�5�9�5�10 �275 images. The order

of images was randomized for each participant, but images could not repeat

back-to-back. In addition to the 275 images of interest, 10 images appeared

at the beginning and another 10 images appeared at the end to buffer against

primacy and recency effects. These 20 filler images consisted of two exemplar

images from each of the 10 remaining categories (from 60 initially), one

exemplar presented at the beginning and the other at the end. Since each
filler image was presented once, numerosity level 1 was more frequent than

other levels and may have stood out. However, as shown later, participants

reliably overestimated small numerosities, suggesting that they were not

overly biased to respond ‘‘1’’.

Apparatus. Participants were seated in a darkened room 70 cm in front

of a Viewsonic CRT monitor running at 100 Hz. Experimental stimuli were

presented using Matlab (Mathworks, Natick, MA) and the Psychophysics
Toolbox version 3 (Brainard, 1997; Pelli, 1997). Each image subtended 12.2

degrees of visual angle along its longest axis on the screen.

Procedure. Participants were informed that the experiment consisted of

two parts, but were not told that their memory for numerosity would be

tested. In the first phase, they were instructed to view each object and to
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determine whether it corresponded to a natural or artificial thing by pressing

one of two keys. This cover task prevented participants from adopting an

explicit strategy such as counting, and was orthogonal to the primary

manipulation because responses were balanced within and across numerosity

levels. The same task was used in all experiments, and we do not report
performance in the Results sections because accuracy was consistently very

high (mean accuracy �94% in every experiment).

On each trial, a colour photograph appeared for 2000 ms. Participants

entered their response during this time by pressing one of two buttons with

their index fingers of both hands (assignment of responses to buttons was

counterbalanced). The image disappeared after 2000 ms regardless of

whether the participant had responded, followed by a blank screen for

1000 ms. This part of the experiment contained 295 trials and lasted about 15
min. Participants then took a break and completed an unrelated distractor

task for 15 min. The purpose of the break was to guarantee that subsequent

judgements would be based on long-term memory.

Participants were then given instructions for the second phase of the

experiment. They were again presented with photographs of single objects,

but now estimated how many times they had seen the object in the first phase

of the experiment. They responded between 1 and 10 by pressing a number

key from ‘‘1’’ to ‘‘0’’ on the keyboard number line (with ‘‘0’’ used for ‘‘10’’).
The 50 categories were presented in a random order during this part. The

estimated numerosity was compared to the actual numerosity from the first

phase. Filler pictures were not tested in the second phase. We note that

participants often expressed surprise when receiving these instructions. In

postexperiment debriefing, no participant reported being aware during the

first part that their memory for numerosity would be tested in the second

part. These responses suggest that effects we observed reflect incidental

encoding of numerosity in VLTM.

Results

We compared estimated numerosity from the second phase against the

objective numerosity from the first phase. At every numerosity level we

averaged across the five categories for that level, separately for each

participant, and then compared these estimates to objective numerosity.

The grand mean across participants is shown in Figure 1A.
To quantify performance, estimated numerosities were modelled as a

function of objective numerosities using linear regression. Since estimated and

objective numerosities ranged from 1 to 10, perfect performance would

correspond to a slope of 1 and an intercept of 0 (i.e., estimated �objective).

In contrast, chance performance (i.e., guessing) would lead participants to

randomly (and thus uniformly) distribute their responses, resulting in a slope of
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0. If participants randomly distributed their estimates across all response

options, the expected intercept would be 5.5 ([10�1]/2).1 We can therefore

judge the accuracy of estimated numerosity on a continuum from perfect

performance to chance performance (i.e., slope: 100, intercept: 005.5). The

linear regression analysis was performed in each participant to obtain a sample

of slope and intercept values across participants. The mean of the slope values

was 0.64 (SD�0.12, median �0.64), reliably above chance performance,

t(19) �24.7, pB.01. The mean of the intercept values was 1.59 (SD�0.71,

median �1.53), again reliably better than chance, t(19) �24.5, pB.01.

Prior research has indicated that performance might decline as numer-

osity increases. In particular, estimates may be precise for small quantities,

but systematically underestimate objective numerosity for larger quantities

(e.g., Izard & Dehaene, 2008). Accordingly, the extent to which estimated

numerosity mirrors perfect versus chance performance may change along the

objective numerosity axis. For example, over a low window (e.g., 1:3) slope

and intercept values may be close to 1 and 0 respectively, whereas over a high

window (e.g., 6:8) slope and intercept values may be close to 0 and 5.5 (or

higher), respectively.

We thus ran a linear regression across all possible windows of three

contiguous numerosity levels for each participant. The same linear regres-

sion analysis as before was run separately on windows [1:3], [2:4], . . . [8:10].

For each window, the mean slope and the intercept values are shown in

Figures 1B and 1C. To quantify our results, one-way ANOVAs were

performed over slopes and intercepts. There were reliable main effects of

Figure 1. Results from Experiment 1a. (A) Mean estimated numerosity plotted against the number

of times each image was presented during the first phase (objective numerosity). (B) Mean slope of a

linear model applied to the data in Figure 1A over windows of three numerosity levels (e.g., ‘‘1:3’’

reflects window from 1 to 3 on the x-axis of Figure 1A). (C) Mean intercept of a linear model applied

over the same windows. Error bars (often quite small) reflect 1 standard error of the mean.

1 Participants performing at chance may prefer certain responses, and so the chance intercept

could differ from 5.5. In such cases, however, we would still expect a slope of 0. Thus, we can

assess chance performance irrespective of such response biases. We will nevertheless use 5.5 as a

benchmark, since we have no a priori reason to believe that such biases would systematically

favour low or high responses across participants.

934 ZHAO AND TURK-BROWNE

D
ow

nl
oa

de
d 

by
 [

In
st

itu
tio

na
l S

ub
sc

ri
pt

io
n 

A
cc

es
s]

 a
t 0

5:
12

 2
5 

A
ug

us
t 2

01
1 



objective numerosity on both measures: Slope, F(7, 133) �4.38, pB.01;

intercept, F(7, 133) �2.34, pB.05. Post hoc Tukey HSD tests revealed that

the mean slope for window [1:3] (M�1.08, SD�0.28) was reliably higher

than for the rest of the windows, t(19) �2.2, pB.05, and the mean intercept

for the same window (M�0.50, SD�0.65) was reliably lower than the rest

of the intercept values, t(19) �2.8, pB.05.

These results suggest that performance starts off near perfect, and

declines as a function of objective numerosity. This function may be

continuous, with estimated numerosity having a logarithmic or power law

relationship to objective numerosity. Such a relationship would be consistent

with classic psychophysical laws relating physical and perceived stimulation

(Fechner, 1860/1999; Stevens, 1961), and a similar pattern has been observed

in a variety of studies of numerical cognition (e.g., Allik & Tuulmets, 1991;

Attneave, 1953; Durgin, 1995; Izard & Dehaene, 2008; Nieder & Merten,

2007). This pattern is often interpreted as evidence of analogue magnitude

coding in the approximate number system (e.g., Brannon, 2006). In our

case, estimated numerosities were well described by both a power law model

and a logarithmic model, with a slight advantage to the power law model

(Table 1).

To examine whether estimated numerosity resulted from counting, we

tested whether the coefficient of variation (CV) at each numerosity level

(standard deviation/mean estimated numerosity across trials) could be

predicted from mean estimated numerosity. A common property of

numerical estimation is that the standard deviation of estimates increases

with numerosity (i.e., scalar variability; Cordes, Gelman, Gallistel, &

Whalen, 2001). Therefore, the slope relating CVs to estimated numerosity

in the absence of counting should be close to zero (Izard & Dehaene, 2008).

Overall, there was a slightly negative slope (mean � �0.03), which was

reliably below zero in the group, t(19) �4.75, pB.01. Further investigation

revealed that only five of 20 participants had slopes that were reliably

negative (pB.05). Combined with the results of Experiment 3a, the weak

TABLE 1
Estimated numerosity modelled by power law and logarithmic models for

Experiments 1a, 1b, and 1c

Power law: y � k* x̂ a Log model: y � a* log(x) � e

k a R2 a e R2

Exp. 1a 1.86 .62 .99 2.69 1.07 .98

Exp. 1b 2.65 .34 .98 1.37 2.48 .95

Exp. 1c 2.31 .46 .99 1.96 1.89 .98
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departure from scalar variability observed here in a subset of participants

does not provide convincing evidence for explicit counting.

Discussion

Experiment 1a demonstrates that participants can make remarkably
accurate numerosity judgements from VLTM, consistent with what has

been observed in studies of word frequency judgements (e.g., Hintzman,

1969). Overall, the mean slope reported here is comparable to that obtained

for judgements about word frequency from long-term memory (0.64 vs.

0.62/0.66; Brown, 2008). Importantly, our experiment differed from such

past studies because participants were not instructed to memorize items for

a later test, and instead encoded them incidentally during a cover task.

Moreover, in neither this nor the next experiments were participants
presented with an explicit category (or context) label during encoding

that grouped items and served as a cue for later numerosity judgements.

Indeed, the fact that participants were unaware that their memory would be

tested and yet were able to achieve high accuracy, suggests that numerosity

can be encoded automatically. Our results are consistent with past findings

that the encoding of numerosity or frequency requires little effort (Hasher &

Zacks, 1979, 1984; cf. Naparstek & Henik, 2010). Despite high overall

accuracy, performance started off near perfect, and declined as a function
of objective numerosity.

EXPERIMENT 1B

The decline in accuracy for large numerosities in Experiment 1a may be due

to the fact that we repeated identical images many times. Such repetition

could lead to habituation or reduced attention that would impair further
encoding. To test this explanation, here we replicate Experiment 1a, but

present multiple exemplars of the same category once, rather than the same

exemplar multiple times. If performance in Experiment 1a was affected by

habituation, this increased novelty may improve encoding and produce more

accurate numerical estimates.

In addition, we interpreted the results of Experiment 1a as reflecting

numerical memory for the exemplar images that were repeated multiple

times, but participants may have also represented the numerosity associated
with the basic-level category from which exemplars were drawn. Indeed,

observers may naturally group exemplars into categories in VLTM, as

evidenced by interference in recognizing one exemplar from VLTM when

many other exemplars from the same category are also stored (Konkle,

Brady, Alvarez, & Oliva, 2010). By presenting exemplars only once in this

experiment, we can titrate numerical memory associated with categories.
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Method

During the first phase, the procedure was identical to Experiment 1a with

one important exception: Instead of presenting the same exemplar image

from each category n times, n distinct exemplars were randomly drawn from

each category and presented only once. For example, if the category dog was

assigned to the numerosity level ‘‘3’’, then images of three different dog

breeds would each be presented once. During the second phase, the

procedure was identical to Experiment 1a except for one change: Category

names (e.g., ‘‘dog’’) rather than exemplar images were used to elicit estimates

of how many images of that category had been presented in the first phase.

Thus, 50 category names were presented in a random order during the

second phase.

Results

Data were analysed in the same manner as Experiment 1a (Figure 2). The

mean slope relating estimated to objective numerosities across participants

was 0.33 (SD�0.16, median �0.34), reliably lower than the mean slope

(M�0.64) in Experiment 1a, t(38) �6.9, pB.01. The mean intercept across

participants was 2.72 (SD�1.18, median �2.58), reliably larger than the

mean intercept (M�1.59) in Experiment 1a, t(38) �3.7, pB.01.

We again explored the stationarity of estimates by computing the slopes

and intercepts of linear functions over three-level windows of objective

numerosity. Despite the relatively poorer performance in this experiment,

visual inspection of Figures 2B and 2C revealed a qualitative difference

between windows [3:5] and [4:6]. One-way ANOVAs did not reveal a main

effect of numerosity on intercept values, F(7, 133) �0.99, p�.44, or a main

effect of numerosity on slope values, F(7, 133) �1.27, p�.27.

Figure 2. Results from Experiment 1b. (A) Mean estimated numerosity plotted against the number

of exemplars of each category from the first phase (objective numerosity). (B) Mean slope of a linear

model applied to the data in Figure 2A over windows of three numerosity levels (e.g., ‘‘1:3’’ reflects

window from 1 to 3 on the x-axis of Figure 2A). (C) Mean intercept of a linear model applied over the

same windows. Error bars reflect 1 standard error of the mean.
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Discussion

Providing multiple exemplars for numerosity estimation did not improve

accuracy. In fact, performance was worse than in Experiment 1a, where

judgements were based on the number of repetitions of a single exemplar.

This suggests that habituation or diminished attention cannot fully explain

the results of Experiment 1a. The worse performance in this experiment

could reflect poor encoding of images presented only once, or source

confusion during retrieval in response to a category label (Johnson,
Hashtroudi, & Lindsay, 1993). For example, ‘‘dog’’ may retrieve more

than three exemplars, with reduced performance reflecting an inability to

distinguish exemplars intruding from prior experience. The worse perfor-

mance could also be due to the use of the availability heuristic when

estimating category numerosities (Pandelaere & Hoorens, 2006).

Despite worse performance, overall accuracy was still above chance. This

finding is remarkable because it shows that participants were able to

maintain numerical memory for 50 categories in parallel, based only on
incidental encoding, and aggregated across multiple distinct exemplars

presented only once. In contrast, in the perceptual domain, participants

can enumerate up to only three colour categories from a single glance

(Halberda, Sires, & Feigenson, 2006). Moreover, when stimuli are presented

serially over a few minutes, up to three object types can be enumerated

successfully, but not four or five types (Feigenson, 2008). This ‘‘capacity’’

difference implies that numerical representations in working memory, even

outside of the typical range of VSTM, are more capacity limited than VLTM
(Brady et al., 2008).

These findings demonstrate that numerical information can not only be

recovered from individual visual stimuli/exemplars, but also from conceptual

abstractions over individuals. There are many possible connections between

object features, and thus tracking the numerosity of every possible

abstraction may be susceptible to combinatorial explosion. The categories

used in the current experiment may be the first abstraction to be processed

and updated since they were often basic categories (Rosch, Mervis, Gray,
Johnson, & Boyes-Braem, 1976). Such biases in how objects are represented

may constrain the number of abstractions that need to be updated.

EXPERIMENT 1C

Although we have attributed the worse performance in Experiment 1b versus

Experiment 1a to weaker encoding, it remains possible that more accurate

numerical representations existed in memory, but that their expression was

hampered by a less informative category-label retrieval cue. To examine this

possibility, here we pair the first phase of Experiment 1a (multiple repetitions
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of a single exemplar) with the second phase of Experiment 1b (category-label

probes). If the decline in performance between Experiments 1a and 1b is due

solely to the less informative retrieval cue, then the results should mirror

Experiment 1b. If instead the decline reflects a difference in the encoding of

numerosity for exemplars vs. categories, then the results should mirror
Experiment 1a.

Method

The first phase was identical to Experiment 1a: The exemplar image from

each category was repeated based on the numerosity level. The second phase
was identical to Experiment 1b: Participants were cued by a category name

(e.g., ‘‘dog’’) and were asked to estimate how many times they had seen an

image from that category.

Results

Data were analysed in the same manner as Experiment 1a (Figure 3). The

mean slope relating estimated to objective numerosities was 0.46 (SD�0.15,

median �0.48), reliably higher than the mean slope (M�0.33) in Experi-

ment 1b, t(38) �2.6, pB.01, and reliably lower than the mean slope

(M�0.64) in Experiment 1a, t(38) �4.2, pB.01. The mean intercept across

participants was 2.31 (SD�0.82, median �2.06), which was not statistically

lower than the mean intercept (M�2.72) in Experiment 1b, t(38) �1.3,
p�.05, but was reliably higher than the mean intercept (M�1.59) in

Experiment 1a, t(38) �2.9, pB.01.

To explore the stationarity of estimates, we computed slopes and

intercepts for linear models over windows of three numerosity levels.

Replicating the findings from Experiment 1a, one-way ANOVAs revealed

main effects of numerosity on both measures: Slope, F(7, 133) �3.19,

pB.01; intercept, F(7, 133) �2.76, pB.05. Moreover, post hoc Tukey HSD

tests revealed that the slope values for window [1:3] (M�0.90, SD�0.61)
were reliably higher than those of other windows, t(19) �2.83, pB.05. The

intercept values for the same window (M�1.26, SD�1.20) were reliably

lower than the other intercept values, t(19) �2.78, pB.05.

Discussion

This experiment confirmed that judgements of numerosity are more accurate

for multiple repetitions of the same exemplar than for single presentations of

multiple exemplars of the same category. The category label did somewhat

impair performance with respect to Experiment 1a, but, critically, cannot

entirely explain the poorer performance in Experiment 1b. Finally, this

experiment provided a replication of Experiment 1a with a retrieval cue that
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was not the actual encoded stimulus, but rather an abstracted property of the
stimulus.

EXPERIMENT 2

While the previous experiments focused on judgements of absolute

magnitude, numerical cognition is often concerned with judgements about
relative magnitude: Which apartment has more space? Which route is faster?

What store has the best selection? Here we examine how participants judge

which of two objects had appeared more times during incidental encoding

into VLTM. Based on the numerical perception literature (Barth et al., 2003;

Izard & Dehaene, 2008), we predict that it will be easier to discriminate

between objects with bigger differences in objective numerosity (distance

effect), and, at a given distance, that it will be easier to discriminate between

objects with lower numerosities (size effect).

Method

Participants. Twenty naı̈ve Princeton University undergraduates parti-

cipated in exchange for course credit (11 female, mean age �19.6 years).

Procedure. The first phase was identical to Experiment 1a, with one

exemplar image repeated multiple times. The second phase was changed to

accommodate a discrimination task. On every test trial, two images were
displayed side-by-side straddling fixation for 2000 ms. Participants judged

which of the images they remembered seeing more times during the first

phase by pressing one of two buttons for left and right. Based on objective

numerosity levels from incidental encoding, we paired images together so as

to fully cover the space of possible distances and proportional distances (for

the size effect). At distance 1, we paired an image that was presented n times

Figure 3. Results from Experiment 1c. (A) Mean estimated numerosity plotted against the number

of exemplars of each category from the first phase (objective numerosity). (B) Mean slope of a linear

model applied to the data in Figure 3A over windows of three numerosity levels (e.g., ‘‘1:3’’ reflects

window from 1 to 3 on the x-axis of Figure 3A). (C) Mean intercept of a linear model applied over the

same windows. Error bars reflect 1 standard error of the mean.

940 ZHAO AND TURK-BROWNE

D
ow

nl
oa

de
d 

by
 [

In
st

itu
tio

na
l S

ub
sc

ri
pt

io
n 

A
cc

es
s]

 a
t 0

5:
12

 2
5 

A
ug

us
t 2

01
1 



with one that was presented n�1 times. Since numerosity levels range from 1

to 10, there were nine pairs at distance 1 (e.g., 1 vs. 2, 2 vs. 3, etc.). The same

pairing method was applied to distances 2, 3, 4, and 5, which resulted in 8, 7,

6, and 5 pairs, respectively. Longer distances were not included due to the

small number of possible trials. Thus, a total of 35 pairs were generated. The
order of pairs was randomized for each participant, and the position on the

screen of the image with the larger numerosity level was randomized.

Results

To test for a distance effect, we pooled all pairs of each distance (regardless of

position on the objective numerosity axis) and computed mean accuracy and

response time (RT; see Buckley & Gillman, 1974). The results for accuracy and
RT are shown in Figure 4. We found that accuracy had a reliable positive

correlation with distance across participants, mean Fisher’s zr�.21,

t(19) �5.72, pB.01, and that RT had a reliable negative correlation with

distance across participants, mean Fisher’s zr��.08, t(19) �2.15, pB.05.

To test for a size effect, we pooled all of the pairs with a base (minimum)

numerosity of 1�5 on the objective numerosity axis (regardless of distance)

and computed mean accuracy and RT (Dehaene et al., 1998). We excluded

base numerosities 6�9 because the distributions of possible distances for
these numerosities were different from each other and from 1�5 (which each

had one pair for every distance). Therefore this analysis tests for a pure effect

of size equating for distance. We found that accuracy had a reliable negative

correlation with size across participants, mean Fisher’s zr��.25,

t(19) �7.04, pB.01, and that RT had a reliable positive correlation with

size across participants, mean Fisher’s zr�.13, t(19) �2.48, pB.05. To

demonstrate the robustness of the size effect, we also ran a correlation

analysis between accuracy and the base numerosity within each distance (as
opposed to collapsing across distance, as earlier). Since there was only one

trial for each size/distance pair (and thus the dependent variable, accuracy,

was binary 1/0), we used a nonparametric Spearman’s rank correlation. We

found a reliable negative correlation between accuracy and base numerosity

for all distances (all psB.05). In other words, the size effect was observed at

every distance.

The previous analysis required that we make an assumption about the

relationship between objective numerosity and participants’ subjective repre-
sentations. However, we can also access these representations by using the

estimated numerosity data from Experiment 1a as a proxy for their

(psychologically transformed) magnitude representations. For every pair, we

thus computed the difference in estimated numerosity (averaged across all

participants from Experiment 1a) for each number in the pair. We found that

accuracy had a reliable positive correlation with the difference in estimated
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numerosity across participants, mean Fisher’s zr�.29, t(19) �8.15, pB.01, and

that RT had a reliable negative correlation with estimated difference across

participants, mean Fisher’s zr��.12, t(19) �3.10, pB.01. Moreover, for every

participant we compared the strength of correlation between the distance in

objective numerosity and accuracy (mean zr�.21) with the strength of

correlation between the distance in estimated numerosity (from Experiment

1a) and accuracy (mean zr�.29). Estimated numerosity was a better predictor

of the distance effect than objective numerosity, t(19) �5.55, pB.01.

Discussion

Despite an entirely different paradigm and timescale, our results were in line

with previous findings on distance and size effects in numerical perception.

When judging which exemplar appeared more times, participants were more

accurate and faster when the difference between the numbers of repetitions

was larger. Holding the distance constant, participants were also more

Figure 4. Results from Experiment 2. (A) Mean discrimination accuracy as a function of distance

between two numerosities in a pair. (B) Mean discrimination accuracy as a function of base (smaller)

numerosity in a pair. (C) Mean RT as a function of distance. (D) Mean RT as a function of base

numerosity. Error bars reflect 1 standard error of the mean.
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accurate and faster when the base numerosity of presentations going into the

distance computation was smaller.

These findings also help interpret the results of Experiment 1a.

Specifically, the nonlinear estimated numerosity in Experiment 1a could in

principle reflect the fact that responses were bounded between 1 and 10.

According to this account, participants may have had linear representations

in mind, but they were artificially compressed by the response options. This

would predict, however, that the estimated numerosities from Experiment 1a

would not be good indices of the numerical representations underlying

discrimination in this experiment (and that objective numerosities may

provide better, linear indices). Instead, we found that estimated numerosities

from Experiment 1a were better predictors of discrimination performance,

supporting the interpretation that numerosity in VLTM scales subadditively.

EXPERIMENT 3A

We have shown that the psychophysical properties of numerical estimation

(Experiments 1a, 1b, and 1c) and numerical discrimination (Experiment 2)

from VLTM are similar to those typically observed from immediate visual

perception. In the following two experiments we investigate how numerical

estimates are generated from VLTM. Numerical estimates may be calculated

retrospectively during test by retrieving multiple stored memories when

probed with an object, and approximating numerosity from that set (the

calculation hypothesis)*similar to approximating over a set of discrete

perceptual objects (e.g., Franconeri, Bemis, & Alvarez, 2009). Alternatively,

numerical estimates may be automatically stored and updated in memory as

a byproduct of the repeated encoding of an object, and directly accessed

during test with no need for further approximation (the readout hypothesis).

An analogous distinction has been made in the word frequency literature.

The multiple-trace theory (Hintzman & Block, 1971) predicts that frequency

judgements are made by estimating over the set of traces for a particular word

(similar to the calculation hypothesis). Conversely, the propositional-encoding

and numerical-inference hypotheses (Hintzman, 1976; Howell, 1973) state that

frequency judgements are based on the retrieval of a counter that is updated

continuously during encoding (similar to the readout hypothesis). The relation-

ship between RT and frequency has been used to distinguish between these

accounts (Hockley, 1984): According to the multiple-trace theory, RT should

increase with frequency because more traces must be retrieved; whereas if

frequency is already stored propositionally or numerically in memory, it is

unclear why RT should vary with frequency. In the case of word frequency

estimation, RT does in fact scale with frequency, consistent with the multiple-

trace theory (e.g., Brown, 1995; Hockley, 1984).
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Using the same logic, Experiment 3a examines the relationship between

RT and objective numerosity in a speeded version of our task. Insofar as

estimated numerosity is calculated during retrieval from VLTM, RT should

increase when more memories are retrieved (i.e., for larger objective

numerosity). This would be consistent with the perceptual literature in

which RT scales with the number of objects being enumerated (e.g.,

Atkinson, Campbell, & Francis, 1976; Kaufman et al., 1949; Lemer,

Dehaene, Spelke, & Cohen, 2003; Mandler & Shebo, 1982; Simon, Peterson,

Patel, & Sathian, 1998; Trick & Pylyshyn, 1994), and with multiple-trace

theory and the word frequency literature cited earlier. Instead, if estimated

numerosity is directly read out from memory, RT should not increase with

objective numerosity. This would be consistent with the propositional-

encoding/numerical-inference hypotheses, and highlight a difference between

numerosity judgements for verbal and visual materials.

Method

Participants. Forty-four naı̈ve Princeton University undergraduates

participated in Experiments 3a (30 participants) and 3b (14 participants)

for course credit (27 female, mean age �20.18 years).

Procedure. The procedure was identical to Experiment 1a, except that in

the second phase participants were instructed to respond as fast as possible

(while remaining accurate).

Results

Our earlier experiments did not emphasize response speed, and thus do not

provide a clean test of the calculation hypothesis. Collapsing across objective

numerosity, RTs in this experiment were much faster than in Experiment 1a

(Ms �1179.43 vs. 1959.50 ms), t(48) �5.55, pB.01. Mean estimated

numerosity and RT are plotted as a function of objective numerosity in

Figure 5. The mean slope relating estimated to objective numerosity was 0.60

(SD�0.14, median �0.61). The mean intercept was 1.97 (SD�0.88,

median �1.79). Neither of these values differed from Experiment 1a: Slope,

t(48) �1.23, p�.22; intercept, t(48) �1.62, p�.11, suggesting that there

was no speed�accuracy tradeoff.

The primary question explored in this experiment was whether it would

take longer to produce larger numerical estimates. We thus examined within-

subject correlations between objective numerosity and RT (Figures 5B and

5D), and found no reliable relationship, mean Fisher’s zr�.04, t(29) �1.49,

p�.14. We reasoned that estimated numerosity may be a more sensitive test
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Figure 5. Results from Experiment 3a. (A) Mean estimated numerosity plotted against objective numerosity. (B) Mean RT plotted as a function of objective

numerosity. (C) Mean RT plotted as a function of estimated numerosity. Error bars reflect 1 standard error of the mean. (D) Distribution of within-subject

correlation coefficients between RT and objective numerosity. (E) Distribution of within-subject correlation coefficients between RT and estimated numerosity.
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of this hypothesis (Figures 5C and 5E), but again there was no reliable

relationship, mean Fisher’s zr�.04, t(29)�1.04, p�.30.

Discussion

The amount of time that participants spent estimating numerosity was not

related to the actual or reported number of times that the image had been

repeated. Inspection of Figure 5 reveals that, in contrast to previous
numerical perception studies, responses were neither slower for numerosity

levels 5�10 versus 1�4 (e.g., Kaufman et al., 1949), nor progressively slower

above the subitizing limit (e.g., Trick & Pylyshyn, 2004). The results are

consistent with the readout hypothesis: That numerosity judgements are

based on numerical representations stored in VLTM that are accessed during

retrieval without further approximation. They also contrast with the word

frequency literature, where an effect on RT has been observed (e.g., Hockley,

1984). This discrepancy could be due to the use of visual versus verbal
stimuli and/or incidental versus intentional encoding tasks. As always,

caution is needed in interpreting null effects. For example, although this is

the largest sample size in any of our experiments and numerical estimates

were quite accurate, our 10-alternative response task may not have been

sensitive enough to detect subtle RT effects.

EXPERIMENT 3B

The results of Experiment 3a fail to support the hypothesis that numerosity
from VLTM is calculated at the time of retrieval. The alternative readout

hypothesis raises many questions about the nature of numerical representa-

tions in VLTM: For example, how are numerical representations updated by

visual experience? Numerical representations could reflect a count of discrete

stimulus occurrences, and/or a continuous sum of total elapsed stimulus

time. To test these possibilities, here we manipulate the duration of stimulus

presentations during encoding. If numerical representations are solely

determined by a discrete count, then increasing stimulus duration should
not influence numerical estimates. If numerical representations are also

determined by the total experience with a stimulus, then extended viewing

may result in greater numerical estimates during retrieval.

Method

As in Experiment 1a, each objective numerosity level was represented by five

object categories. One exemplar image was randomly chosen from each

category and was presented the corresponding number of times. The

presentation duration of every repetition of that image was fixed at 1, 2, 3,
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4, or 5 s (with each duration represented by one image from each category).

For example, if the categories dog, bear, car, flower, and horse were chosen at

a particular numerosity level, the exemplar image from each of the categories

might always be presented for 3, 1, 5, 2, and 4 s, respectively. Duration

assignment was randomized across participants and within each numerosity

level. The procedure was identical to Experiment 1a, except that the

experiment lasted longer due to the duration manipulation (20 min).

Results

Mean estimated numerosity is plotted as a function of objective numerosity

and stimulus duration in Figure 6. Again replicating previous experiments,

the linear regression between estimated and objective numerosity revealed a

mean slope of 0.62 (SD�0.11, median �0.60), which did not differ from

Experiment 1a, tB1. The mean intercept was 2.24 (SD�0.87, med-

ian �2.19), which was reliably higher than Experiment 1a, t(32) �2.40,

pB.05. This difference may reflect the greater mean stimulus duration in this

experiment.

The primary question that we explored in this experiment was whether

image duration would increase estimated numerosity. To assess the relation-

ship between image duration and estimated numerosity, we collapsed across

objective numerosity and computed the mean estimated numerosity for each

duration. We found that stimulus duration had a reliable positive correlation

with estimated numerosity across participants, mean Fisher’s zr�.08,

t(13) �3.88, pB.01. We then ran a linear regression analysis for each

participant to quantitatively assess the impact of duration on estimated

numerosity. The mean beta coefficient across participants was 0.14

Figure 6. Results from Experiment 3b. (A) Mean estimated numerosity plotted against objective

numerosity, collapsing across stimulus duration. (B) Mean estimated numerosity plotted against the

duration of each presentation of a stimulus, collapsing across objective numerosity. Error bars reflect 1

standard error of the mean.
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(SD�0.15, median �0.1) and was reliably greater than zero, t(13) �3.59,

pB.01. Thus, each additional second of stimulus duration counted as 14% of

a repetition.

Discussion

When estimating numerosities, participants were influenced by how long the

image had been presented during incidental encoding. This finding supports
the idea that numerical representations can be influenced by the total

amount of experience with a stimulus, in addition to a discrete count of the

number of stimulus occurrences.

Since previous studies have found Stroop-like interference of numerical

cues with duration processing (e.g., Dormal, Seron, & Pesenti, 2006), the

effect observed here might be due to Stroop-like interference of duration on

numerosity. However, in our experiment the duration was experienced well

before numerosity judgements (15�30 min), and there were many intervening
items and durations presented before numerosity judgement. For these

reasons, we do not think the effect of duration on numerosity can be

explained by Stroop-like interference.

It should be noted that stimulus duration does not have the same effect on

estimated numerosity as the discrete count: The observed slope for duration

corresponded to a smaller change in estimated numerosity than the change

associated with an additional repetition. Specifically, in Experiment 1a each

objective numerosity level (2 s stimulus repetition) increased estimated
numerosity by .64, whereas in Experiment 3b an equivalent duration step (2 s

presentation time) caused a more modest change of .28. Thus, although total

elapsed experience plays a role, numerical estimates from VLTM may also be

influenced by the number of repetitions per se.2

GENERAL DISCUSSION

Summary

Across six experiments, we demonstrated that numerosity judgements from
VLTM can be accurate, and that accuracy is especially high for a smaller

number of repetitions. Moreover, judgements for multiple repetitions of the

same exemplar image were more accurate than those for single presentations

of multiple exemplars from a category. This decrement could not be

2 We infer a role for discrete repetitions from the fact that duration caused an increase in

estimated numerosity of half the size of an extra repetition (with a matching increase in

duration). The independent contribution of repetitions could be quantified by holding the total

duration of an item constant, and manipulating the number of repetitions. We thank a reviewer

for this suggestion.
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explained solely by the informativeness of the retrieval cue used to probe

numerical memory. When discriminating between two numerosities, perfor-

mance increased with their distance from each other, but decreased as the

magnitude or absolute size of the numerosities increased. These findings are

largely in agreement with studies of numerical perception. We then explored
how numerical estimates can be generated from long-term memory. The

amount of time it took to make numerical judgements did not correlate with

magnitude, suggesting that these judgements were unlikely to be based on

post hoc calculation over a set of retrieved episodes. Second, numerical

judgements correlated with the presentation duration of images, suggesting

that these judgements were at least partially based on the total amount of

experience with a stimulus. In all experiments, participants expressed

surprise at being tested for numerosity, demonstrating that precise estimates
of numerosity can be encoded and updated automatically in VLTM.

Exemplar vs. category repetitions

Performance in estimating the number of exemplars of a category (Experi-

ment 1b) was not superior to estimating the number of repetitions of the

same exemplar image (Experiment 1a). This result held even when memory

was probed with the same instructions and category-label retrieval cue
(Experiment 1c). This rules out the possibility that the observed coding of

magnitude in memory reflected a failure to attend to or encode multiple

repetitions of the same stimulus due to habituation (see Grill-Spector,

Henson, & Martin, 2006; Turk-Browne, Scholl, & Chun, 2008). Our result is

consistent with the finding that when a word category label (e.g., CITY)

was paired with the same context exemplar (e.g., London, London, London),

its frequency was estimated to be higher than when it was paired with

different context exemplars (e.g., Boston, London, Cleveland) on each
repetition (Brown, 1995). Note, however, that participants in our study first

encountered the category label in the second phase, purportedly after

category-specific numerosity had already been represented.

The fact that estimating the number of exemplars of a category was worse

than estimating the number of exemplar repetitions was surprising to us. One

possible explanation is that stimulus repetition interacts with numerical

memory at the categorical level. In particular, presenting exemplars once

each in Experiment 1b may have resulted in weak memories such that
subsequent retrieval based on a category label was more susceptible to

failures of source monitoring (Dougherty & Franco-Watkins, 2003; Johnson

et al., 1993). In other words, due to the relative weakness of experimental

memories associated with the cue, participants may have been less able to

screen out matching extraexperimental memories (e.g., knowing that I saw

three dogs in the experiment, separate from the five seen earlier in the day).
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The greater strength of the experimental memories in Experiment 1c due to

multiple stimulus repetitions may have mitigated such intrusions. This

account could be tested directly by including both repetitions of individual

exemplar images and multiple exemplars from the same category.

Another possibility is that numerical representations in long-term
memory are more precise when attached to specific versus abstract features

of a stimulus. In other words, numerical memory may be stored and updated

primarily at the level of individual stimuli rather than at higher levels of the

category hierarchy. If true, this numerical bias for exemplars could be

analogous to the processing priority received by basic object categories (e.g.,

Rosch et al., 1976). Nevertheless, the fact that numerical estimates for

categories were even moderately accurate suggests that summary features (in

this case numerosity) can be attached to multiple levels of the conceptual
hierarchy in VLTM.

It remains possible that our superordinate natural/artificial cover task

focused attention at a level of categorization higher than what was probed in

Experiment 1b. At the same time, exemplar numerosity was encoded in spite

of the superordinate task. Future research could: (a) manipulate cover tasks

to explore whether the automatic encoding of numerosity in VLTM is

affected by task demands, or (b) change the retrieval cue to probe different

levels of categorization. A final and related possible explanation for the
exemplar superiority in numerical visual memory is that there may have been

variability in representativeness of exemplars we chose for a particular

category. Thus, exemplars may have differentially contributed to the

numerosity associated with a category, and this may have been lessened

when a single exemplar was presented repeatedly (and could thus serve as the

sole anchor for that category).

Exact and approximate representations of numerosity

Estimated numerosity was highly accurate for a small number of repetitions

(generally up to five repetitions), after which estimates seemed to plateau.

Moreover, performance declined*changing from near-perfect to more

chance-like*over windows moving continuously from low to high quan-

tities. Our results suggest that incidental encoding in long-term memory may

rely on an exact system for small quantities coupled with an approximate

system for larger quantities (e.g., Feigenson et al., 2004). At the same time, it
can be difficult to conclusively interpret this pattern of results as emerging

from an abrupt break between two systems because the pattern can also be

represented by a continuous logarithmic or power function. Such functions

have been used to argue for the existence of a single process that operates

over both small and large quantities (e.g., Dehaene & Changeux, 1993;

Durgin, 1995).
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To adjudicate between these accounts, one can rely on the fact that the

logarithmic function implies equal discriminability within sets of numbers

that have the same ratios*whether 1�8 or 10�80 in steps of 10 (decades)*
but that for the exact system, numbers 1�4 are special. A recent study used

this logic and found support for an exact number system: Participants were
much faster and more accurate at naming numbers 1�4 than 5�8, but there

was no difference between 10�40 and 50�80 (Revkin et al., 2008). In this

context, the lack of an RT effect in Experiment 3a is quite surprising. Despite

being more accurate for numerosities 1�4, the fact that our participants were

not faster in this range suggests that numerical memory for small quantities

may not be equivalent to subitizing.

The distance and size effects we observed are in line with studies of

immediate visual perception (Barth et al., 2003; Whalen et al., 1999). The
prevailing explanation of these effects is that representations of large

numbers are approximate and imprecise, and, as a result, that discrimination

between two close large numbers is difficult or impossible (leading to chance

discrimination performance). Indeed, accuracy in Experiment 2 dropped to

50% for pairs with both magnitudes above 8. These results provide evidence

for an analogue representation of numerosity in VLTM, where the number of

items in the set is represented by a magnitude that is a linear function of the

cardinal value of the set, and that discrimination is a function of the log ratio
of the quantities (see reviews by Brannon, 2006; Gallistel, 1990; Wynn,

1998). Such representations appear universal across development and

species, and here we demonstrate that they can be aggregated incidentally

over much longer time scales during visual experience.

The source of numerosity in long-term memory

Our initial experiments demonstrated that numerical memory is robust, and
that it exhibits similar psychophysical properties to numerical perception.

The remaining experiments explored the nature of these representations and,

in particular, where they come from. Experiment 3a tested whether numerical

representations are calculated during retrieval. However, we did not observe

an effect of numerosity on RT despite clear accuracy effects. This result is

incompatible with a multiple-trace model in which discrete episodes can be

individuated, but where the number of such episodes is not an intrinsic part

of the representation and must be calculated (Hintzman, 1976).
The lack of an RT effect is more consistent with the hypothesis that

numerosity estimates are based on a readout of existing representations

stored in VLTM. Several models may help explain the nature of such

representations. One possibility is that numerical estimates are based on the

strength of memory for the repeated stimulus, which could be influenced

both by the number of presentations and the duration of exposure to the
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stimulus (Hintzman, 1969, 1976). Our findings are also compatible with an

accumulator model (Meck & Church, 1983), where the accumulator is based

on a count of discrete experiences and/or a sum of their durations. The

original findings that supported this theory focused on the count and total

duration of a continuous train of auditory noises. Applying this theory to

our data would require positing multiple accumulators (i.e., one for each

exemplar and category), which could operate in parallel across delays and

interruptions (cf. Halberda et al., 2006).

Many questions remain: For example, although estimated numerosity

exhibited nonlinearity, it is unclear whether nonlinear estimates arise because

of marginal gains in strength as a function of repetition, or because of an

internal psychophysical function mapping magnitude representations stored

in memory to retrieved and reported estimates.

Conclusions

We found that numerical memory has detailed similarities to numerical

perception. In addition, some of the novel findings from our study*such as

differences between exemplar and category numerosity, and effects of

stimulus duration*suggest interesting avenues for future research on

numerical cognition. For example, it may be fruitful to examine whether

task-irrelevant stimulus dimensions that influence numerical memory also

influence numerical perception (e.g., duration), and vice versa (e.g., area;

Hurewitz, Gelman, & Schnitzer, 2006). Overall, our findings suggest that

analogous mechanisms may operate in numerical perception and numerical

memory.
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