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Introduction

The concept of randomness is instrumental to the under-
standing of human cognition. That is, the ability to detect 
regularities and patterns in the environment supports basic 
learning processes, from simple conditioning (Rescorla & 
Wagner, 1972), statistical learning (Fiser & Aslin, 2001), 
to language acquisition (Kelly & Martin, 1994). However, 
despite the significance of this ability, the cognitive system 
does not always represent the concept of randomness accu-
rately, and such misconceptions often lead to systematic 
biases in judgments of randomness (Kahneman & Tversky, 
1972; Tversky & Kahneman, 1971), which can cause sub-
optimal behaviors in gambling (Wagenaar, 1988). 
Therefore, elucidating how people understand randomness 
not only helps inform basic learning processes but also 
provides insight into problematic behaviors.

In common parlance, the term “random” is applied to 
sequences of events that appear sufficiently disorderly or 
unstructured. For example, the string hthhtthtttht of heads 
and tails from coin tosses might qualify as random, 
whereas hhhhhhtttttt would not. A contrasting usage, 

adopted here, applies the term to certain mechanisms for 
generating events, namely, whose successive outputs are 
independent and unbiased. A standard example is a device 
D that tosses a fair coin repeatedly (ignoring issues about 
predictability assuming all forces were known). Any 
sequence of heads and tails produced by such a device is 
qualified as “randomly generated (by D)” regardless of its 
pattern. Thus, the terminology in this article follows a 
“process” rather than “product” conception of random-
ness (see Eagle, 2014; Earman, 1986 for an extended 
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discussion between the two approaches). Specifically, in 
our usage, a “random” stimulus (or pattern) is an object 
that has been produced by a random process. Non-random 
stimuli are defined as productions from a distorted ran-
dom source.

The randomness of the coin flipper D can be compro-
mised in various ways, for example, by making one of its 
two outcomes more likely than the other. Instead of intro-
ducing a bias to the probabilities of the two outcomes, here 
we consider deviations from stochastic independence by 
allowing previous flips to influence the next one while 
maintaining the equal frequency of the two outcomes. This 
allows us to identify the lay conception of randomness 
along a continuum. Specifically, for each number p in the 
unit interval (from 0 to 1), let D(p) generate a sequence of 
bits consisting of 0s and 1s as follows:

Sequence generation using the device D(p): An unbiased coin 
toss determines the first bit. Suppose that the nth bit has been 
constructed (for n ≥ 1). Then with probability p the n + 1st bit 
is set equal to the opposite of the nth bit; with probability 1 − p 
the n + 1st bit is set equal to the nth bit. Repeat this process to 
generate a sequence of any length.

This procedure was first introduced by Zhao, Hahn, and 
Osherson (2014). It can be seen that D(0.5) is a genuinely 
random device. For p < 0.5, D(p) tends to repeat itself, 
resulting in long runs, whereas for p > 0.5, D(p) tends to 
alternate. In particular, D(0) is uniform, either 0000 . . . or 
1111 . . . , while D(1) consists of perfectly alternating bits, 
either 0101 . . . or 1010 . . . The expected proportion of 
each bit is 50%, for all p ∈ (0, 1), although, empirically, the 
output might deviate from 50%; however, such deviations 
should be small and random. For any sequence produced 
by D(p), the expected proportion of alternation—called the 
“switch rate”—is p. The switch rate of any sequence is cal-
culated by the number of switches between two successive 
bits divided by the total number of bits in the sequence 
minus one. For example, the switch rate of the sequence of 
11111 or 00000 is 0, and the switch rate of 01010 is 1.

Admittedly, there may be discrepancies between the 
observed switch rate of the sequences produced by the 
generating process D(p) and the intended switch rate (p). 
Here, we ran two simulations demonstrating the nature of 
this discrepancy. For each of the five intended switch 
rates—0.1, 0.3, 0.5, 0.7 and 0.9—we produced 1000 binary 
sequences. The length of each sequence was 100 bits for 
the first simulation (Figure 1a) and 6400 bits for the sec-
ond simulation (Figure 1b). We calculated and plotted the 
observed switch rate of the produced sequences.

Figure 1 shows the distribution of the observed switch 
rates for 100-bit sequences and 6400-bit sequences across 
the five levels of intended switch rates. For both types of 
sequences, there was a normal distribution of the observed 
switch rates, suggesting that the average observed switch 

rate matched the intended switch rate, and it was equally 
likely for the observed switch rate to be higher or lower 
than the intended switch rate. Moreover, the variance in 
the observed switch rate was smaller for 6400-bit sequences 
than for 100-bit sequences.

A large body of research on randomness perception has 
revealed a pervasive bias in people’s concept of “random.” 
That is, people often expect random sequences to exhibit 
greater alternations than typically produced by random 
devices, or in our terms, p > 0.5 (Falk & Konold, 1997; 
Kahneman & Tversky, 1972; Lopes & Oden, 1987; 
Nickerson & Butler, 2009; Wagenaar, 1972; for reviews on 
theoretical analysis of major experimental findings, see 
Bar-Hillel & Wagenaar, 1991; Oskarsson, van Boven, 
McClelland, & Hastie, 2009).

The over-alternation bias has been typically examined 
using judgment or production paradigms (e.g., Kahneman 
& Tversky, 1972; Wagenaar, 1972), where participants 
either judged how random a sequence appeared or pro-
duced a sequence as if it were generated by a random pro-
cess. The over-alternation bias is consistent with the 
gambler’s fallacy (Kahneman & Tversky, 1972; Reuter 
et al., 2005; Wagenaar, 1988) and could be driven by limi-
tations in working memory (Baddeley, 1966; Hahn & 
Warren, 2009; Kareev, 1992).

However, most studies in the past have primarily used 
visual stimuli (e.g., 0011 or HHTT) to represent random 
sequences. Thus, the over-alternation bias found in these 
studies may be driven by constraints in the visual system. 
Currently, it is unknown how this bias manifests in different 
modalities and how the expression of the bias is influenced 
by specific task demands. Thus, to assess whether the over-
alternation bias is a domain-general phenomenon, it is cru-
cial to examine the bias across different sensory modalities 
(e.g., visual or auditory), stimulus feature dimensions (e.g., 
color or shape), presentation modes (e.g., temporal or spa-
tial) and tasks (e.g., judgment or production). If the bias is 
consistent across different domains, this would suggest that 
people have a stable concept of randomness, robust to dif-
ferent task requirements and sensory processing constraints. 
On the other hand, any inconsistency would imply that the 
expression of the randomness concept depends on the elici-
tation method and the modality in which it is expressed.

The primary goal of this study is, thus, to examine the 
subjective concept of randomness across multiple domains. 
This will offer insights into the stability or consistency of 
the over-alternation bias. In Experiment 1, participants 
observed a sequence of bits produced by D(p) for as long as 
they wanted. They were asked to adjust the sequence by 
increasing the likelihood of alternations or the repetitions 
of the bits to make the sequence look maximally random. In 
other words, they manipulated the switch rate p until they 
were satisfied that the sequence was being generated “ran-
domly.” We then measured how close p was to 0.5 (genuine 
randomness). Of principal interest was the stability of the 
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switch rate across variations in the stimuli that represent the 
bits generated by D(p). In Experiment 2, we examined the 
stability of the switch rate in a randomness production task. 
We replicated the tasks in Experiments 1 and 2 using a 
within-subjects design with more statistical power in 
Experiment 3. The three experiments investigated the con-
sistency of people’s randomness concept across stimulus 
features, modalities, presentations and tasks. A summary of 
the stimulus conditions is shown in Table 1.

Experiment 1

The goal of this experiment was to examine the subjective 
concept of randomness across stimulus feature dimen-
sions, sensory modalities and presentation modes.

Participants

In total, 46 undergraduate students (29 females, mean 
age = 20.7 years, standard deviation [SD] = 2.1) from the 
University of British Columbia (UBC) participated for 
course credit. Participants in all experiments provided 
informed consent. All experiments reported here have 
been approved by the UBC Behavioral Research Ethics 
Board.

Apparatus

In all experiments, participants were seated 50 cm from a 
computer monitor (refresh rate = 60 Hz) and used stereo 
headphones for auditory stimuli. Stimuli were presented 

Figure 1.  Histograms of switch rates in the simulated sequences. (a) Each sequence was 100 bits in length. At each switch rate 
(0.1, 0.3, 0.5, 0.7 and 0.9), we simulated 1000 sequences. The observed switch rates of the produced sequences showed a normal 
distribution at each level. (b) Each sequence was 6400 bits in length. At each switch rate (0.1, 0.3, 0.5, 0.7 and 0.9), we simulated 
1000 sequences. The observed switch rates of the produced sequences showed a normal distribution at each level with smaller 
variances.
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and responses were collected using JAVA and Python 
interfaces.

Stimuli

Temporal sequences.  There were six temporal trials, each 
containing a binary sequence. The six trials consisted of 
two color trials, two shape trials and two auditory trials 
(Figure 2a). In each color trial, the two bits were repre-
sented by a green square (RGB values: 3, 254, 82) and a 
blue square (RGB values: 6, 32, 244). In each shape trial, 
the two bits were a black square and a black circle. The 
square width and the circle diameter subtended 5.1°. In 
each auditory trial, the two bits were a high tone (pitch: 
392 Hz) and a low tone (pitch: 262 Hz). One bit was pre-
sented at a time. For each type of trial, there was one fast 
trial and one slow trial. In a fast trial, each bit was pre-
sented for 400 ms and the inter-stimulus interval (ISI) was 
a blank screen for 200 ms. In a slow trial, each bit was 
again presented for 400 ms, but the ISI was 1000 ms.

Spatial matrices.  There were six spatial trials, each con-
taining a matrix. The six trials consisted of three small 
matrices and three large matrices (Figure 2b). Each matrix 
was constructed by tiling either vertically or horizontally a 
sequence of green and blue squares. The large matrix was 
80×80, with 6400 bits subtending 14°. The small matrix 
was 10×10, with 100 bits subtending 11.3°.

Thus, there were 12 trials in total for each participant, 
allowing the following comparisons in presentation mode 
temporal versus spatial, color versus shape, visual versus 
auditory, fast versus slow and small versus large matrices. 
These exhaustive comparisons permitted the examination 
of consistency of randomness judgments across various 
stimulus domains within the same individual participant.

Procedure

Temporal trials.  For each temporal trial, the starting switch 
rate of the sequence was randomly determined from 0 to 1. 
Each bit was presented on the screen for 400 ms, and the 
ISI was 200 ms for a fast trial and 1000 ms for a slow trial. 
As participants viewed each bit, they were asked to adjust 
the sequence by clicking on two buttons, one labeled 
“more repeating” and the other “less repeating,” in order to 
make the sequence maximally random. As soon as the par-
ticipant pressed a button, the switch rate in the generating 
process D(p) changed by a constant amount. Specifically, 
if the participant pressed on the “more repeating” button, 
the switch rate in the generating process D(p) decreased by 
0.025; if the participant pressed on the “less repeating” 
button, the switch rate in the generating process D(p) 
increased by 0.025. It was made clear to the participants 
that by clicking the buttons they were directly altering the 
generating process D(p) which determined the overall 
likelihood of a repeat in the sequence, rather than immedi-
ately changing the number of repeats in the sequence. 
Their goal was to change the generating process D(p) such 
that the sequence resembles a fully random sequence. This 
instruction closely followed the “process” definition of 
randomness, rather than the “product” definition. Every 
participant in all three experiments clicked on the buttons 
to adjust the likelihood of seeing a repeat in the sequence.

While it was possible, although unlikely, for a random 
process D(0.5) to produce an output that looked non-ran-
dom, we encouraged the participants to take as much time 
as they needed, to click as many times as they needed and 
to view as many bits as possible before they made their 
decision.1 It is important to note that by altering the gener-
ating process, participants did not immediately increase 
the run length but rather increased the probability of the 
next bit to repeat the previous bit since run length and 

Table 1.  Summary of stimulus conditions in Experiments 1 and 2.

Experiment Probing method Starting point Presentation Features

1 Adjust the switch rate in 
the generating process 
until the stimulus looks 
maximally random

The starting point of the stimulus 
switch rate was randomly 
determined from 0 (fully 
repeating) to 1 (fully alternating)

Temporal Colored squares: green and blue
Temporal Black shapes: squares and circles
Temporal Tones: high and low pitches
Spatial 10 × 10 matrices
Spatial 80 × 80 matrices

2 Change the color of each 
cell until the matrix looks 
maximally random

The starting point of the switch 
rate was 0 (fully repeating)

Spatial 10 × 10 matrices

The starting point of the switch 
rate was 1 (fully alternating)

Spatial 10 × 10 matrices

The starting point of the switch 
rate was 0.5 (fully random)

Spatial 10 × 10 matrices

3 Replicating Experiments 
1 and 2 using a within-
subjects design

The same as described in 
Experiments 1 and 2

The same as 
described in 
Experiments 
1 and 2

The same as described in 
Experiments 1 and 2, except the 
matrix dimensions are 11 × 11 
and 81 × 81
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switch rate independently impact the perception of ran-
domness (Scholl & Greifeneder, 2011). There was no time 
limit for any trial. When the sequence was rendered maxi-
mally random in the judgment of the participant, he or she 
pressed another button to end the trial, and the switch rate 
(p) of the generating process was recorded; the same was 
true for the spatial trials described below. The order of the 
temporal trials was randomized for each participant.

Spatial trials.  For each spatial trial, the starting switch rate 
of the sequence was randomly determined from 0 to 1. The 
tiling (vertical or horizontal) of the sequence in the matrix 
was randomly determined. Participants were instructed to 
process the matrix holistically, and we never mentioned 
horizontal or vertical tilings. We should point out that even 
though the switch rate along one traversal (e.g., horizontal) 
was not fully random (e.g., p = 0.7), the switch rate along 

the other traversal (e.g., vertical) was expected to be close 
to 0.5, except for fully repeating or alternating matrices.

Participants were asked to adjust the matrix by clicking 
on either the “more repeating” or the “less repeating” but-
ton to make the matrix look maximally random. As soon as 
the participant pressed a button, the switch rate of the 
sequence changed by 0.025 as in the temporal trials, and a 
new matrix was presented with a randomly determined til-
ing direction. As with the temporal trials, participants were 
instructed that by clicking the buttons they were directly 
altering the generating process D(p) which determined the 
overall likelihood of a repeat in the matrix, rather than 
immediately changing the number of repeats in the matrix. 
Their goal was to change the generating process D(p) such 
that the matrix resembles a fully random matrix.

Participants were encouraged to view each matrix for as 
long as desired and to make as many adjustments as they 

Figure 2.  Stimuli and results for Experiment 1. (a) Three types of temporal sequences were presented. In the color sequence, the 
two bits were green and blue squares. In the shape sequence, the two bits were circles and squares. In the auditory sequence, the 
two bits were high and low tones. Each sequence started with a random switch rate, and participants adjusted the switch rate until 
the sequence looked maximally random. (b) Two types of matrices were presented, a small 10×10 matrix and a large 80×80 matrix. 
A fully alternating sequence tiled horizontally or vertically would result in a striped pattern, rather than a checkerboard pattern. 
Each matrix was generated from a sequence of blue and green squares, tiled vertically or horizontally. Participants adjusted the 
switch rate of the matrix until it looked maximally random. (c) The switch rate of temporal and spatial trials. (d) The switch rate of 
each type of temporal and spatial trials. Error bars indicate ±1 between-subjects standard error of the mean (SEM).
*p < 0.05; **p < 0.01.
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wanted. There was again no time limit for any trial. If the 
matrix looked maximally random, participants pressed 
another button to end the trial. Participants always com-
pleted the temporal trials before the spatial trials. The 
order of the small or large matrices was randomized for 
each participant.

Results and discussion

Across all trials, participants viewed 97.8 (SD = 55.4) bits 
on average of a sequence before making a decision. They 
adjusted the sequence 34.4 (SD = 59.0) times on average 
before making a decision.

For each trial, the switch rate of the sequence that the 
participant judged to be maximally random was recorded. 
Across participants, the average switch rate of the tempo-
ral trials was 0.53 (SD = 0.10), reliably above 0.5 (fully 
random) (t(45) = 2.03, p < 0.05, d = 0.30). The average 
switch rate of the spatial trials was 0.55 (SD = 0.12), 
again reliably above 0.5 (t(45) = 2.71, p < 0.01, d = 0.40), 
but not different from that of the temporal trials 
(t(45) = 0.80, p = 0.43, d = 0.14). This reveals an over-
alternation bias for both temporal and spatial trials 
(Figure 2c). To confirm that the initial switch rate of each 
sequence was not biased, we found that the starting 
switch rate was not different from 0.5 for the temporal 
trials (M = 0.49, SD = 0.12, t(45) = 0.42, p = 0.68, d = 0.06) 
or for the spatial trials (M = 0.50, SD = 0.12, t(45) = 0.14, 
p = 0.89, d = 0.02). These results suggest that over-alter-
nating sequences were judged to be maximally random, 
regardless of the temporal or the spatial presentation 
mode.

First, for the temporal trials, a 3 (three feature dimen-
sions: color, shape and tone) × 2 (fast vs slow speed) 
repeated-measures analysis of variance (ANOVA) revealed 
no main effect of feature dimension (F(2, 90) = 0.06, 
p = 0.94, ηp

2 0 09< . ), speed (F(1, 45) = 0.08, p = 0.78, 
ηp
2 0 01< . ) or interaction (F(2, 90) = 0.03, p = 0.94, 

ηp
2 0 01< . ). There was no difference in the switch rate 

among the color, shape and auditory trials (F(2, 90) = 0.06, 
p = 0.94, ηp

2 0 01< . ). Then, the specific types of temporal 
trials were compared. The average switch rate was 0.533 
(SD = 0.16) for the color trials and 0.525 (SD = 0.15) for the 
shape trials, and the two were not different (t(45) = 0.30, 
p = 0.77, d = 0.05). The average switch rate for the auditory 
trials was 0.535 (SD = 0.16). Moreover, the average switch 
rate was 0.528 (SD = 0.13) for the fast trials and 0.534 
(SD = 0.12) for the slow trials, and the two were not differ-
ent (t(45) = 0.28, p = 0.78, d = 0.05). No specific trial type 
produced a switch rate reliably above 0.5 (t(45) < 1.90, 
p > 0.06, d < 0.29). Nonetheless, the switch rates of all trial 
types were remarkably similar (between 0.525 and 0.535; 
Figure 2d). This suggests that the randomness judgment 
was consistent across feature dimensions, sensory modali-
ties and presentation speed.

For spatial trials, the average switch rate was 0.57 
(SD = 0.15) for small matrices, reliably above 0.5 
(t(45) = 3.28, p < 0.01, d = 0.48). The average switch rate 
was 0.52 (SD = 0.15) for large matrices, not different from 
0.5 (t(45) = 0.89, p = 0.38, d = 0.13) or from that of the 
small matrices (t(45) = 1.84, p = 0.07, d = 0.35). There was 
a significant correlation in the switch rates between small 
matrices and temporal trials (r(44) = 0.39, t = 2.79, p < 0.01), 
but not between large matrices and temporal trials 
(r(44) = 0.13, t = 0.86, p = 0.40). This suggests that the 
over-alternation bias was more prominent when the sam-
ple that the participants experienced at a given moment in 
time was small (100 bits) than when the sample was large 
(6400 bits).

Finally, we observed a strong anchoring effect for all 
types of trials in the experiment. Specifically, the switch 
rate was highly correlated with the starting switch rate for 
both temporal trials (r(44) = 0.50, t = 3.85, p < 0.001) and 
spatial trials (r(44) = 0.44, t = 3.23, p < 0.01), and also for 
color (r(44) = 0.58, t = 4.67, p < 0.001), shape (r(44) = 0.46, 
t = 3.44, p < 0.01), auditory trials (r(44) = 0.59, t = 4.85, 
p < 0.001), as well as for small matrices (r(44) = 0.55, 
t = 4.33, p < 0.001) and large matrices (r(44) = 0.49, t = 3.72, 
p < 0.001).

Taken together, these results suggest that over-alternat-
ing sequences were judged as maximally random. 
Importantly, this bias was consistent across presentation 
modes (temporal vs spatial), feature dimensions (color vs 
shape), sensory modalities (visual vs auditory), speed (fast 
vs slow) and stimulus size (small vs large matrices).

Experiment 2

In Experiment 1, any adjustment made by the participants 
altered the underlying process that generated the stimuli 
and thus resulted in an entirely new and different sequence. 
A different method to probe people’s concept of random-
ness is to have participants produce each bit in the sequence 
as if the bits are generated by a random process. Thus, 
Experiment 2 employed this paradigm to see whether the 
over-alternation bias was consistent with that observed in 
Experiment 1.

Participants

In total, 65 undergraduate students (47 females, mean 
age = 21.5 years, SD = 2.9) from UBC participated for 
course credit.

Stimuli and procedure

Participants completed 12 trials in total. In each trial, they 
were first presented with a matrix and then asked to adjust 
the cells in the matrix to make it maximally random. The 
initial matrix was fully uniform, alternating or random. 
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Participants were encouraged to change as many cells in the 
matrix as they wanted in order to make the matrix maxi-
mally random. This method was comparable to that in 
Experiment 1 where a strong anchoring effect was observed.2

Each matrix was 10×10 with 100 cells in total, subtend-
ing 15°. Each cell could be either black or white, repre-
senting the two possible bits. Of the 12 trials, there were 
three types of matrices which were initially presented to 
participants: uniform matrices with all black or white cells 
(probability of a switch was 0 in the generating process), 
fully alternating matrices with a sequence (probability of a 
switch was 1 in the generating process) tiled horizontally 
or vertically, and fully random matrices with a random 
sequence (probability of a switch was 0.5 in the generating 
process) tiled horizontally or vertically (Figure 3a). The 
trials were presented in a random order.

In each trial, participants first viewed the initial matrix 
and then clicked on any cell in the matrix to reverse its 
color. They were told to produce a maximally random 
matrix as if all the bits were generated by a truly random 
process (e.g., a fair coin). They were encouraged to change 
as many cells as they like and also take as much time as 
they needed until the matrix looked fully random. As in 
Experiment 1, there was no time limit. The observed 
switch rate of the matrix was recorded.

Results and discussion

To compute the switch rate of a produced matrix, the 
matrix was transformed into two binary sequences, one by 
extracting the bits across columns horizontally through the 
matrix and another by traversing across rows vertically 
through the matrix. The switch rates of the two sequences 
were computed and then averaged. The average switch 
rate was 0.53 (SD = 0.07), reliably above 0.5 (t(64) = 3.48, 
p < 0.001, d = 0.43). This again shows an over-alternation 
bias in the production of random matrices (Figure 3b). The 
current switch rate was not reliably different from that of 
the small matrices (0.57) in Experiment 1 (t(109) = 1.78, 
p = 0.08, d = 0.36) or from the switch rate of temporal trials 
(0.53) in Experiment 1 (t(109) = 0.06, p = 0.95, d = 0.01). 
This reveals a consistent concept of randomness between 
the two experiments using different probing methods.

Among the three types of matrices, there was a reliable 
difference in the switch rate via a one-way repeated-meas-
ures ANOVA (F(2, 128) = 26.18, p < 0.001, ηp

2 0 29= . ). 
Specifically, when the initial matrix was uniform, the 
switch rate of the produced matrix was 0.48 (SD = 0.13), 
not different from 0.5 (t(64) = 1.14, p = 0.26, d = 0.14), but 
reliably different from that when the initial matrix was 
fully alternating (M = 0.55, SD = 0.05, t(64) = 5.45, 
p < 0.001, d = 0.70) or when the initial matrix was fully ran-
dom (M = 0.56, SD = 0.05, t(64) = 5.19, p < 0.001, d = 0.74). 
The latter two switch rates were not different from each 
other (t(64) = 0.62, p = 0.53, d = 0.06) but were both 

reliably above 0.5 (alternating: t(64) = 7.74, p < 0.001, 
d = 0.96; random: t(64) = 8.88, p < 0.001, d = 1.10).

These results suggest that the produced matrix was 
over-alternating and biased toward the initial matrix, 
showing the same anchoring effect as in Experiment 1. 
Importantly, the over-alternation bias was consistent with 
that in Experiment 1, despite the differences in the tasks.

Experiment 3

The goal of this experiment was to replicate Experiments 1 
and 2 with a more powerful design. In Experiment 1, each 
participant only completed one temporal trial for each type 
of trials. To reduce the variance within a participant, we 
here increased the number of trials for each type of trials 
within a participant. Moreover, each participant completed 
the tasks in both Experiments 1 and 2. Thus, Experiment 3 
used a within-subjects design with more statistical power 
to examine the over-alternation bias.

Participants

In total, 50 undergraduate students (39 females, mean 
age = 19.9 years, SD = 2.3) from UBC participated for 
course credit.

Stimuli and procedure

Each participant completed 64 trials in total. The first 40 
trials were analogous to the temporal trials and spatial trials 
described in Experiment 1. Each temporal trial described in 
Experiment 1 was run four times, resulting in 24 temporal 
trials. Following the temporal trials, participants completed 
16 spatial trials, where participants either adjusted a smaller 
11×11 matrix subtending 10° (8 trials) or a larger 81×81 
matrix subtending 9° (8 trials) to allow for a checkerboard 
rather than a stripy pattern for fully alternating matrices. The 
order of the direction of tiling (vertical vs horizontal) was 
randomized and counterbalanced. For both the temporal and 
spatial trials, participants adjusted the temporal sequences 
or spatial matrices by clicking two buttons—“more repeat-
ing” or “less repeating”—for as long as they would like, 
until the sequence/matrix looked maximally random to 
them. In addition, participants were explicitly told that a 
maximally random sequence is the one that is most likely to 
be generated by a random process (e.g., a fair coin). Once 
again, participants were told that they were adjusting the 
overall likelihood of seeing a repeat in the sequence, rather 
than immediately changing the number of repeats after each 
adjustment. Participants then clicked a separate button to 
end the trial, and the switch rate in the generating process 
for the temporal sequences was recorded, but the observed 
switch rate of the matrices was recorded. This is because 
there was no way to identify the length of the temporal 
sequence over which the participant deemed most random.
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The last 24 trials in the experiment were the same as the 
12 trials described in Experiment 2, except for two critical 
differences: (1) the number of trials doubled, and (2) each 
matrix was 11×11 to allow for a checkerboard rather than 
a stripy pattern for fully alternating matrices.

Results and discussion

In this experiment, the observed switch rate of the adjusted 
matrices (analogous to the spatial trials in Experiment 1) 

and the observed switch rate of produced matrix (analo-
gous to Experiment 2) were computed in the same way as 
in Experiment 2. That is, to compute the switch rate of a 
matrix, the matrix was transformed into two binary 
sequences, one by extracting the bits across columns hori-
zontally through the matrix and another by traversing 
across rows vertically through the matrix. The switch 
rates of the two sequences were computed and then aver-
aged. On average, participants viewed 33.9 (SD = 14.1) 
bits in a sequence before making a decision. On average, 

Figure 3.  Stimuli and results for Experiment 2. (a) Three types of the initial 10×10 matrices were presented to participants. Two 
examples of each type are shown in the figure. Uniform matrices started with all black or white cells, fully alternating matrices with 
a fully alternating sequence tiled horizontally or vertically, and fully random matrices with random sequences tiled horizontally or 
vertically. Participants clicked on the cells in the matrix to change its color, until the matrix appeared maximally random as if the 
matrix was determined by a random process. (b) The switch rate of participants’ produced matrices was presented for each of the 
three initial matrices. The switch rates were compared against the truly random point 0.5.
**p < 0.01.
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participants made 14.4 (SD = 9.6) adjustments before mak-
ing a decision.

For the temporal trials, a 3 (three feature dimensions: 
color, shape and tone) × 2 (fast vs slow speed) repeated-
measures ANOVA revealed a main effect of feature dimen-
sion (F(2, 98) = 4.74, p = 0.01, ηp

2 0 09= . ), but no effect of 
speed (F(1, 49) = 0.05, p = 0.83, ηp

2 0 01< . ) or interaction 
(F(2, 98) = 0.13, p = 0.88, ηp

2 0 01< . ). The switch rates 
were reliably above 0.5 for color (M = 0.53, SD = 0.08, 
t(49) = 2.33, p = 0.02, d = 0.53), shape (M = 0.56, SD = 0.08, 
t(49) = 5.21, p < 0.001, d = 0.74) and tone dimensions 
(M = 0.56, SD = 0.08, t(49) = 5.49, p < 0.001, d = 0.78), 
revealing a robust over-alternation bias (Figure 4a). 
Among the three types of temporal trials, there was a reli-
able difference (F(2, 98) = 4.74, p = 0.01, ηp

2 0 09= . ); both 
shape and tone trials were higher than color trials (p < 0.05), 
but there was no difference between shape and tone trials 
(p = 0.99).

For the spatial trials analogous to those in Experiment 
1, the switch rates of both the large and small matrices 
were reliably above 0.5 (for large matrices: M = 0.52, 
SD = 0.06, t(49) = 2.31, p = 0.03, d = 0.33; for small matri-
ces: M = 0.54, SD = 0.06, t(49) = 5.61, p < 0.001, d = 0.79). 
Consistent with the findings in Experiment 1, the switch 
rate of small matrices was reliably higher than those of 
large matrices (t(49) = 2.19, p = 0.03, d = 0.38).

For the spatial trials analogous to those in Experiment 
2, among the three types of matrices (with the initial matrix 

being uniform, random or alternating), there was a reliable 
difference in the switch rate via a one-way repeated- 
measures ANOVA (F(2, 98) = 64.59, p < 0.001, ηp

2 0 57= . ), 
with all pair-wise comparisons being significant (p < 0.001). 
This provides further evidence for the anchoring effect of 
the initial matrix as found in Experiment 2.

Specifically, when the initial matrix was uniform, the 
switch rate of the produced matrix was 0.44 (SD = 0.12), 
reliably below 0.5 (t(49) = 3.61, p < 0.001, d = 0.51), but 
when the initial matrix was random, the switch rate of the 
produced matrix (M = 0.54, SD = 0.04) was reliably above 
0.5 (t(49) = 6.43, p < 0.001, d = 0.91). When the initial 
matrix was fully alternating, the switch rate of the pro-
duced matrix (M = 0.63, SD = 0.10) was reliably above 0.5 
(t(49) = 10.01, p < 0.001, d = 1.42).

Additionally, the average switch rate of the produced 
matrices in this task was not different from that of the tem-
poral task (t(49) = 1.16, p = 0.25, d = 0.23) or spatial task 
(t(49) = 0.47, p = 0.64, d = 0.07) shown in Figure 4a. This 
further provides evidence for the consistency of the over-
alternating bias across different task domains and probing 
methods.

General discussion

The goal of this study was to examine consistency in the 
subjective concept of randomness across different 
domains. Across three experiments, we found a highly sta-
ble over-alternation bias across presentation modes (tem-
poral vs spatial), feature dimensions (color vs shape), 
sensory modalities (visual vs auditory), speed (fast vs 
slow), stimulus size (small vs large matrices) and probing 
methods (adjusting the generating process vs individual 
bits). These results suggest that the subjective concept of 
randomness is consistent in the face of vast stimulus vari-
ations. In addition, we found a strong anchoring effect in 
all experiments. Specifically, the switch rate of the 
sequences that were deemed as most random was corre-
lated with the starting switch rate of the sequence 
(Experiment 1). Moreover, the switch rate of the produced 
matrix was lower when the starting matrix was fully uni-
form than when the starting matrix was fully alternating or 
random (Experiments 2 and 3). Despite the anchoring 
effect, the over-alternation bias was consistent across all 
experiments.

The over-alternation bias observed in this study was 
less pronounced than that in previous studies on random-
ness judgments (Bar-Hillel & Wagenaar, 1991; Falk & 
Konold, 1997; Lopes & Oden, 1987; Nickerson & Butler, 
2009; Wagenaar, 1972; Zhao et al., 2014). The switch rate 
of the stimuli that were deemed maximally random in our 
tasks ranged from 0.52 to 0.63, whereas in most previous 
studies the switch rate was above 0.6. The relatively low 
switch rate might be driven by the anchoring effect. Since 
the starting switch rate of the stimuli was around 0.5 for 

Figure 4.  Results of Experiment 3. (a) Replication of 
Experiment 1. (b) Replication of Experiment 2. The switch 
rates were compared against the truly random point 0.5.
*p < 0.05; **p < 0.01.
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all experiments, this initial anchor may have weakened 
the over-alternation bias toward true randomness, lower-
ing the final switch rate of the stimuli that were judged as 
maximally random. However, it is worth noting that the 
anchoring effect automatically alters perception without 
subjective awareness (Tulving & Schacter, 1990). In our 
experiments, such bias to anchor to the initial sequence 
affected the produced sequence, but bias might be largely 
implicit in our participants which could automatically 
influence their conscious decision of how random the 
stimulus looked, although we did not have direct evidence 
on their awareness.

The most noteworthy finding of this study was that the 
over-alternation bias was consistently observed across 
various stimulus and task domains. This consistency sug-
gests that people’s concept of randomness is immune to 
differences in the stimuli used to embody randomness and 
in the elicitation methods used to express randomness. 
People’s conception of randomness must therefore have a 
stable abstract character, applying similarly to distinct 
physical domains. There were, however, variations in the 
strength of the over-alternation bias. For example, the bias 
was smaller in the color dimension (in Experiment 3) than 
in the shape or the tone dimensions. One possible explana-
tion is that the contrast between the two colors may be 
more salient and thus better encoded than a switch in 
shapes or tones, resulting in a more accurate expression of 
randomness.

What explains the consistent over-alternation bias? One 
explanation focuses on the limitations of working memory 
(Baddeley, 1966; Kareev, 1992). People can only hold a 
limited number of items in working memory, which means 
that the amount of bits processed at a given moment in 
time is constrained. This is especially true when people 
process temporal sequences. On the other hand, the over-
alternation bias was less prominent with large spatial 
matrices, where people can sample large amounts of infor-
mation simultaneously. This finding is consistent with 
Hahn and Warren’s (2009) explanation, that is, within 
finite sequences (less than 500 bits), alternations are more 
likely to occur than streaks. Thus, the over-alternation bias 
could be explained by people’s limited perceptual experi-
ences with the environment. This also suggests that as peo-
ple sample more information in large matrices (with 6400 
bits), the over-alternation bias should be reduced, which 
was supported by our findings.

In addition to the working memory account, people 
may assume equal frequency of outcomes within a local 
sequence they can sample due to local representativeness 
(Tversky & Kahneman, 1971). Such emphasis on local 
equality for a limited number of bits held in working mem-
ory can cause the over-alternation bias. If local equality is 
assumed for short sequences (as in small matrices or tem-
poral sequences in our experiments), the enforced balance 
of frequency of each outcome would increase the switch 

rate of the sequence. This account is supported by the find-
ings in all experiments where the switch rate was consist-
ently above 0.5.

In conclusion, this study demonstrates a highly consist-
ent over-alternation bias in people’s randomness concept 
across presentation modes, feature dimensions, sensory 
modalities, stimulus speed, stimulus size and probing 
methods.
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Notes

1.	 The encouragement to observe long stretches of the 
sequence was a hedge against unlucky outputs from D(p). 
It is possible even for D(0.5) to relentlessly produce the 
same bit over and over; however, this is unlikely. (Notice 
that all sequences of the same length have the same prob-
ability of random generation.) There is thus no guarantee 
that bad luck does not infect the results reported below, only 
low probability that such is the case. It was made clear to 
the participants that a maximally random sequence is most 
likely generated by a random process (e.g., a fair coin).

2.	 It is difficult to compare our paradigms with a temporal produc-
tion task where participants generate a random sequence. This is 
because participants are not exposed to any initial sequence in the 
temporal production task, and thus, their produced sequence is 
free from any anchoring effect. Therefore, we did not include a 
temporal production task in this experiment. Nonetheless, to pro-
vide evidence for our concern, we did run a temporal production 
task where each participant produced a 100-bit sequence of Ts 
and Hs. The average switch rate of the produced sequence was 
0.68 (standard deviation [SD] = 0.12), reliably above 0.5 (t = 11.54, 
p < 0.001, d = 1.43). This switch rate is consistent with previ-
ous studies on randomness production (Bar-Hillel & Wagenaar, 
1991), but much higher than the switch rate in our tasks.
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