
Capacity limit of ensemble perception of multiple spatially
intermixed sets

Anna Xiao Luo1
& Jiaying Zhao2,3

Published online: 8 August 2018
# The Psychonomic Society, Inc. 2018

Abstract
The visual system is remarkably efficient at extracting summary statistics from the environment. Yet at any given time, the environ-
ment consists of many groups of objects distributed over space. Thus, the challenge for the visual system is to summarize over
multiple groups. The current study investigates the capacity and computational efficiency of ensemble perception, in the context of
perceiving mean sizes of multiple spatially intermixed groups of circles. In a series of experiments, participants viewed an array of
one to eight sets of circles. Each set contained four circles in the same colors, but with different sizes. Participants estimated the mean
size of a probed set. The set that would be probed was either known before onset of the array (pre-cue condition) or afterwards (post-
cue condition). By comparing estimation error in the pre-cue and post-cue conditions, we found that participants could reliably
estimate mean sizes for approximately two sets (Experiment 1). Importantly, this capacity was robust against attention bias toward
individual objects in the sets (Experiment 2). Varying the exposure time to stimulus arrays did not increase the capacity limit,
suggesting that ensemble perception could be limited by an internal resource constraint, rather than the speed of information encoding
(Experiment 3). Moreover, we found that the visual system could not encode and hold more individual items than ensemble
representations (Experiment 4). Taken together, these results suggest that ensemble perception provides an efficient way of informa-
tion processing but with constraints.

Keywords Perceptual organization . Visual workingmemory . Selective attention

Faced with the complex information in the environment, our
visual system is capable of extracting statistical summaries,
including the mean, the variance, or global correlations of
objects (Alvarez, 2011). This process is termed ensemble per-
ception. One form of ensemble perception, estimation of the
average, has been shown to operate accurately and quickly in
many feature domains, such as size (Ariely, 2001, 2008;
Chong & Treisman, 2003, 2005a), orientation (Parkes,
Lund, Angelucci, Solomon, & Morgan, 2001), location
(Alvarez & Oliva, 2008), motion (Watamaniuk & McKee,
1998), and facial expression (Haberman & Whitney, 2009).

Ensemble perception is suggested to occur in an automatic
manner, with little requirement of focal attention, as it can be
computed from crowded objects presented in the peripheral
vision (Parkes et al., 2001), or when attention is engaged by a
concurrent task (Alvarez &Oliva, 2008). Extracting ensemble
representations can occur rapidly: The mean size of two arrays
of circles could each be accurately estimated within 50 ms of
exposure (Chong & Treisman, 2003), and the mean emotion
of faces could be accurately perceived within 500 ms of ex-
posure (Haberman & Whitney, 2009). Ensemble perception
can also be formed without precise representation of the indi-
vidual objects constituting the group (Whitney, Haberman, &
Sweeny, 2014). For instance, Parkes et al. (2001) found that
although observers could not accurately estimate orientations
of Gabor patches presented in the peripheral vision due to
crowding, their judgment of a Gabor in the foveal vision
was nonetheless biased by the average orientation of the pe-
ripheral Gabors. Similarly, Sweeny, Haroz, and Whitney
(2013) showed that estimation of the average walking direc-
tion of a crowd was more accurate than the estimation of the
walking direction of an individual person in the crowd, or a
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foveally presented person. Moreover, studies also show that
mean size can be computed for sequentially presented circles,
suggesting ensemble perception is a dynamic process actively
involving working memory (Albrecht & Scholl, 2010).

Capacity limit of ensemble perception

Ensemble perception extracts the gist of an otherwise complex
scene. Yet within any natural scene, there can be multiple
spatially intermixed object groups, defined by similarity or
proximity in one or more feature dimensions. How does the
visual system extract summary statistics for multiple spatially
intermixed groups of objects at the same time? Answers to this
question can help us understand the interplay of selective at-
tention, perceptual organization, and working memory in de-
termining our perceptual experience with limited cognitive
resources (Norman & Bobrow, 1975).

Earlier studies suggest that ensemble perception is likely to
be a capacity-limited cognitive process. Halberda, Sires, and
Feigenson (2006) examined the capacity of one specific type
of summary statistics, enumeration, of one to six spatially
intermixed sets of circles. They derived the capacity limit of
multiset enumeration by comparing the percentage error in the
pre-cue condition (where participants knew which set to enu-
merate prior to seeing the multiset display) and the post-cue
condition (where participants did not know which set to enu-
merate until the multiset display was shown and disappeared).
On average, participants could enumerate up to two sets, along
with enumerating the whole display (the superset). Chong and
Treisman (2005a) were among the first to explore ensemble
perception of multiple sets of objects. In their study, circles in
two different colors were spatially intermixed, and
participants were asked to judge which of the two sets had a
larger average size. Performance did not differ whether
participants knew which set would be probed before seeing
the two sets, suggesting that participants were able to compute
the mean size for both of the two sets. Im and Chong (2014)
examined the capacity limit of visual working memory for
mean sizes of two to five sets of circles and found that approx-
imately 2.5 sets could be remembered when the sets were
spatially intermingled. These studies suggest the possibility
of extracting ensemble representations for multiple spatially
intermixed sets.

However, there is still a lack of systematic characterization
of ensemble capacity limit with respect to attention modula-
tion and exposure durations, and detailing the relationship
between capacity of ensemble perception and that of individ-
ual object perception. The current study sought to provide
further insight into these questions.

The role of attention in determining the capacity of ensem-
ble perception is multifaceted. On one hand, the visual system
is found to be sensitive to ensemble information and statistical

regularities in the stimuli with little demand of focused atten-
tion (Alvarez & Oliva, 2008, 2009; Turk-Browne, Scholl,
Chun, & Johnson, 2009). On the other hand, attention toward
an individual object is shown to bias estimation of summary
statistics of the set. For instance, de Fockert and Marchant
(2008) directed participants’ attention to an individual circle
in a set while asking them to estimate mean size of the set and
found their estimation systematically biased toward the
attended item. Chong and Treisman (2005b) also showed that
mean size estimation was more accurate when distributed at-
tention to the set, rather than focused attention to individual
items, was employed. However, it remains to be examined
whether biasing attention to individual items would affect
how many sets could be summarized. Therefore, one of our
objectives in the current study to investigate whether the ca-
pacity for ensemble perception was the same when attention is
deliberately biased toward an individual object in a set.

Another objective of our study is to determine how capac-
ity of ensemble perception would be a function of stimulus
exposure. Ensemble perception has been shown to operate as
rapidly as after 50–200 ms of exposure for features such as
orientations and sizes (Ariely, 2001; Chong & Treisman,
2003; Dakin, 2001), yet its precision seems to improve with
increased exposure (Chong & Treisman, 2003; Whiting &
Oriet, 2011). Meanwhile, the Boolean map theory of attention
suggests that features in the same dimension (e.g., different
colors) can only be attended to one at a time (Huang &
Pashler, 2007; Huang, Treisman, & Pashler, 2007; Morales
& Pashler, 1999; Woodman & Luck, 2003). Thus, given a
multiset display, the capacity of ensemble perception might
be constrained by both (a) the rate of sampling and integrating
individual objects in a set, which follows a temporal course at
the millisecond scale, and (b) the speed of attending to and
summarizing each set in a sequential manner, which requires
shifts of attention that are suggested to have a time constant of
≤150 ms (Grubert & Eimer, 2016; Jenkins, Grubert, & Eimer,
2018; Woodman & Luck, 2003). In estimating the capacity of
ensemble perception, effects of encoding speed need to be
distinguished from effects of internal resource capacity.

Finally, we aim to compare the capacity of ensemble
perception and that of individual object perception.
There is a rich body of literature showing that ensemble
perception can be formed even when the representation
of individual objects at an equivalent precision is not
available due to crowding, or brief exposure (Alvarez,
2011; Haberman & Whitney, 2009; Parkes et al., 2001).
These findings speak to the efficiency of ensemble per-
ception. However, as these studies primarily focused on
comparing the precision of ensemble perception and in-
dividual object perception, it remains unknown how
these two perceptions differ in terms of their capacities.
A direct comparison of their capacities would allow
testing of the efficacy of ensemble perception.
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Measuring capacity limit

To determine the capacity limit of ensemble perception, we
used a pre-cue and post-cue paradigm, which has been widely
used in visual perception and working memory studies. In a
typical pre-cue condition, the visual cue is presented prior to
the onset of the stimulus array, such that attention can be
directed to task-relevant information in the array (Griffin &
Nobre, 2003;Woodman, Vecera, & Luck, 2003). In a post-cue
condition, the cue is presented only after the offset of the
stimulus array, such that attention needs to be distributed
among all items in the array during encoding (Griffin &
Nobre, 2003; Hollingworth & Maxcey-Richard, 2013).
Halberda et al. (2006) and Poltoratski and Xu (2013) used
the pre-cue and post-cue paradigm to examine the capacity
of multiset enumeration. Following these studies, in our ex-
periments, the capacity limit is measured as the minimum
number of sets of items where task performance is reliably
different between the pre-cue and the post-cue conditions.
The major advantage of measuring capacity limit by compar-
ing pre-cue and post-cue performance is that it maintains the
same perceptual load between conditions and allows manipu-
lation of attention.

The current study

The goal of the current study is to investigate the capacity limit
of ensemble perception. The first three experiments character-
ized the capacity of ensemble perception by exploring wheth-
er there was a fixed upper limit. Experiment 1 examined the
maximum number of sets over which the visual system could
summarize. To examine the robustness of the capacity limit,
Experiment 2 deliberately biased participants’ attention to one
circle in each set, while asking them to compute the set means.
In Experiment 3, we manipulated exposure durations of the
stimulus arrays to examine whether the capacity limit found in
Experiment 1 was due to information processing speed.
Experiment 4 compared the capacity of ensemble and individ-
ual object perception by eliminating any requirement of mean
computation.

General method

Participants

Participants in all experiments were undergraduate students at
the University of British Columbia (UBC), and were recruited
through the Human Subjects Pool in the Department of
Psychology. All participants had normal or corrected-to-
normal vision, provided informed consent, and received

course credits as compensation. All experiments were ap-
proved by the UBC Behavioral Research Ethics Board.

Statistical power

The required sample size was calculated a priori assuming a
Type I error level of α = 0.5 and a medium effect size (η2 =
0.1) for a two-way repeated-measures ANOVA. Based on the
power analysis, our sample size should be at least 19. Thus, 22
participants were recruited for each of the four experiments.

Apparatus

In all experiments, participants were seated 60 cm from a
computer monitor (13.3 in.; 1,280 pixels × 900 pixels; refresh
rate = 60 Hz). Stimuli were presented using MATLAB
(MathWorks, Natick, MA) and the Psychophysics Toolbox
(http://psychtoolbox.org).

Stimuli

Each stimulus array consisted of one to eight sets of colored
circles presented against a gray background (see Fig. 1).
Hereafter in our study, we define Bset size^ as the number of
sets in a stimulus array, which should be distinguished from
the magnitude of a set (i.e., how many items a set contains),
and from the total or mean area covered by circles in a set.

Each set contained four circles in the same color (in
Experiments 1–3), or only one circle in one color (in
Experiment 4). The color was unique for each set and random-
ly selected from a pool of eight colors (red, green, blue, yel-
low, cyan, magenta, orange, and black). The circles were ran-
domly assigned to cells in an invisible 5 × 7 grid (subtending
16.04° × 22.46° in visual angle) on the screen. Within each
cell, the circle was placed at the center with random jittering of
up to 0.17°.

To determine the circle diameter for experiments with four
circles per set (Experiments 1–3), the grand mean (i.e., the
mean of all circles in the array) was first determined for trials
where the set size Swas an even number (S = 2M,M = 1, 2, 3,
4). The individual set means were evenly spaced around the
grand mean by steps of 0.21°. For trials where the set size S
was an odd number (S = 2M − 1, M = 1, 2, 3, 4), the grand
mean of 2M sets was first determined, and the individual set
means were evenly spaced around the grand mean by steps of
0.21°. We removed one of the two set means closest to the
grand mean to obtain 2M − 1 sets. Within each set, the diam-
eters of individual circles were evenly spaced around the set
mean by steps of 0.21°. The range of circle diameters was
between 0.31° and 2.90°. In Experiment 4 with only one circle
per set, the set means themselves were used as individual
circle sizes.

Atten Percept Psychophys (2018) 80:2033–2047 2035
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All four experiments used a direct report task, in which the
participants reported a set mean or a circle size by adjusting
the size of a probe circle with the mouse. The probe circle was
placed at the screen with a starting diameter of 0.21°, and its
color indicated the set or the circle being probed. As this
starting diameter was always smaller than all possible circle
sizes (0.31° to 2.90°) in the encoding array, participants would
not be able to make a categorical judgment about the target
(e.g., smaller than the probe). The size of the probe circle was
bounded between 0.04° and 3.52°. No feedbackwas provided.
Participants were given unlimited time to make a response in
each trial, though they were instructed to respond as quickly
and accurately as possible.

Data analysis

Trials with response times greater than three standard devia-
tions from the participant’s mean in each condition were re-
moved.We used the root mean square error (RMSE; in square
visual degrees) as the measure of error, which is computed for
each experimental condition c as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
∑nc

i θ
2
i

nc

s

; ð1Þ

where θi = ui − Ri is the signed error in trial i, with ui being the
participant’s estimate of set mean, and Ri the true set mean
probed in that trial. nc is the number of trials in a given cue and
set size condition c. Alternative RMSE computations were
used in Experiment 2.

In all experiments, we inferred the capacity limit based on
the difference of RMSE between the pre-cue and post-cue
conditions (Halberda et al., 2006).

Experiment 1

In Experiment 1, we sought to determine the capacity limit of
ensemble perception using the pre-cue/post-cue paradigm.We
hypothesized that mean size perception might have a two-set
or three-set capacity constraint, similar to the capacity of other

summary statistics such as multiset enumeration (Halberda et
al., 2006; Poltoratski & Xu, 2013).

Participants and procedure

Twenty-two undergraduate students (14 females, Mage = 20.1
years, SD = 1.9 years) participated in the experiment.
Experimental procedures, stimuli, and apparatus followed
the general method. There were two within-subject condi-
tions: pre-cue and post-cue (see Fig. 2). In each trial, partici-
pants first fixed a central cross for 1,000 ms. In the pre-cue
condition, the fixation cross was filled with a stimulus color,
signaling that participants would be asked to report the mean
size of the set in that particular color. In the post-cue condition,
the cross was hollow with a white outline, so participants did
not know which set would be later probed. After fixation, an
array with one to eight sets of circles were presented for 1,000
ms, followed by a white-noise mask for 500 ms, and then a
probe circle in a stimulus color. The intertrial interval was 500
ms. The experiment began with 10 practice trials, followed by
a total of 320 experimental trials. There were 20 trials in each
Cue × Set Size condition.

Results and discussion

The RMSE is shown in Fig. 3. A 2 (cue condition: pre-cue
vs. post-cue) × 8 (set size: one to eight) repeated-measures
ANOVA revealed a significant main effect of cue condi-
tion, F(1, 21) = 48.40, p < .001, η2p = 0.70, and RMSE was

lower in the pre-cue condition, t(175) = 10.32, p < .001, d =
0.78, 95% CI [0.45, 0.66]. A main effect of set size, F(7, 147)
= 6.38, p < .001, η2p = 0.23, and an interaction effect, F(7, 147)

= 5.12, p < .001, η2p = 0.20, were also observed. A one-way

ANOVA revealed significant effect of set size on post-cue
RMSE, F(1, 147) = 7.94, p < .001, η2p = 0.27, but not on

pre-cue RMSE, F(7, 147) = 1.17, p = .322, η2p = 0.05.

Paired-sample t tests showed that post-cue RMSE was signif-
icantly greater than the pre-cue RMSE at set sizes ≥3, t(21) =
0.85, p = .405, d = 0.18 at set size one; t(21) = 1.76, p = .092, d

Fig. 1 Examples of stimulus array for the ensemble task. a One set of stimuli. b Four sets of stimuli. In Experiments 1–3, each set contained four circles
as the figures show here. In Experiment 4, each set contained only one circle. (Color figure online)
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= 0.38 at set size two; and ts(21) ≥ 3.70, ps ≤ .001, ds ≥ 0.79
for set sizes three to eight. Thus, beyond set size two, mean
size estimation was less accurate in the post-cue condition
than in the pre-cue condition. The two-set capacity limit we
observed here was consistent with the two-set to three-set
capacity for enumeration (Halberda et al., 2006; Poltoratski
& Xu, 2013) and visual working memory of mean size of
circles (Im & Chong, 2014).

Experiment 2

How robust would the two-set capacity limit observed in
Experiment 1 be if participants were subject to bottom-up
attention biases? In this experiment, we deliberately biased
participants’ attention to one circle in each set while
instructing them to compute the set means. Despite previ-
ous studies showing attention bias could undermine preci-
sion of ensemble perception (Chong & Treisman, 2005b;
de Fockert & Marchant, 2008), we hypothesized that at-
tention bias might not affect its capacity, since capacity
and precision could be two separable aspects of a cogni-
tive function (Ma, Husain, & Bays, 2014).

Participants and procedure

Twenty-two new participants (16 females, Mage = 19.7 years,
SD = 1.5 years) from UBC took part in the experiment. The
stimuli and procedure (see Fig. 4) were identical to those in
Experiment 1, except for one critical difference. In each trial,
the array appeared on the screen for 300 ms after fixation, and
one randomly selected circle in each set briefly disappeared
for 200 ms. Afterwards, all circles would be presented for 700
ms. The brief flash of the circles intended to bias attention to
one circle in each set and was completely task irrelevant.

As in Experiment 1, we computed the RMSE based on the
set mean (RMSES) and the RMSE based on the flashed circle
in the probed set (RMSEF). The former was calculated with
Eq. 1, and the latter with:

RMSEF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑nc

i¼1ϕ
2
i

nc

s

; ð2Þ

where ϕi ¼ ui−R
0
i is the difference between actual response

(ui) and size of the flashed circle in the probed set (R
0
i ) for trial

i. Variable nc is the number of trials in a given Cue × Set Size
condition c. Comparison between RMSES and RMSEF would
indicate whether participants based their estimation on the true
set mean or on the flashed circle.

Results and discussion

The RMSE’s are shown in Fig. 5. A two-way repeated-mea-
sures ANOVA onRMSES revealed a significant main effect of
cue condition, F(1, 21) = 36.31, p < .001, η2p = 0.63, with

post-cue RMSES greater than pre-cue RMSES, t(175) =
9.53, p < .001, d = 0.72, 95% CI [0.38, 0.58]. A main effect
of set size was also observed, F(7, 147) = 4.26, p < .001, η2p =

0.17. There was a reliable interaction effect between cue and
set size, F(7, 147) = 7.05, p < .001, η2p = 0.25, which could be

Fig. 2 Experiment 1 procedure. Example trial in the pre-cue condition (a)
and in the post-cue condition (b). In each trial, the array contained one to
eight sets of circles, each set containing four circles in the same color. In
the pre-cue example trial, the cyan fixation cross indicated the mean size

of the four cyan circles would be probed later; in the post-cue example
trial, the fixation cross was hollow and the set to be probed was not
known in advance. (Color figure online)

Fig. 3 Experiment 1 results. Estimation accuracy measured in RMSE (in
square visual degrees) at each set size in the pre-cue and the post-cue
conditions. (*p < .05, †p < .10, error bars reflect ±1 SEM)
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explained by a significant effect of set size on post-cue
RMSES, F(7, 147) = 8.21, p < .001, η2p = 0.28, but not on

pre-cue RMSES, F(7, 147) = 1.14, p = .344, η2p = 0.05. Paired-

sample t tests indicated significant difference between the pre-
cue and post-cue RMSES at set sizes ≥3, t(21) = −1.21, p =
.241, d = 0.26 for set size one; t(21) = 1.20, p = .243, d = 0.26
for set size two; and ts(21) ≥ 3.95, ps < .001, ds ≥ 0.84 for set
sizes three to eight. This showed a deterioration of estimation
accuracy at set sizes ≥3. The two-set capacity limit here was
consistent with Experiment 1 and demonstrated the robustness
of ensemble capacity. To examine whether mean size estima-
tion was influenced by flashed circles in the array, we com-
pared RMSES and RMSEF across conditions and set sizes
using a three-way ANOVA with a 2 (RMSE condition:
RMSES and RMSEF) × 2 (cue condition) × 8 (set size) design.
There was a main effect of RMSE condition, F(1, 21) = 52.53,
p < .001, η2p = 0.71, with RMSEF being significantly higher

than RMSES, t(351) = 15.84, p < .001, d = 0.84, 95%CI [0.17,
0.22]. This was true in both the pre-cue condition, F(1, 21) =
47.67, p < .001, η2p = .69, and the post-cue condition, F(1, 21)

= 41.40, p < .001, η2p = .66. Estimation was more likely to be

based on the mean of all circles in the set rather than the
flashed circle.

Nonetheless, were the participants still biased toward the
flashed circle? A partial correlation test was run on each par-
ticipant between their estimation and the size of the flashed
circle in the probed set, after controlling for the probed set
mean. Among the 22 subjects, only five showed significant
(p < .05) or marginally significant (p < .10) partial correlations
(see Appendix 1). This observation, together with the
ANOVA analysis, suggested a minimal biasing effect. Our
results differed from those of de Fockert and Marchant
(2008), which suggests mean size computation was biased
toward the attended item. One possible explanation would
be that in their study, participants were explicitly instructed
to attend to either the largest or the smallest circle in the set,
whereas our biasing items were randomly chosen from the set,
and were presented in a bottom-up manner. Possibly, the sa-
lience of the biasing items was stronger in their paradigm than
in ours, which led to the different results.

Experiment 3

In an ensemble perception task, performance is likely to be
determined by two independent factors: An encoding limit that
describes the maximum rate at which visual inputs can be sam-
pled, integrated, and encoded (Huang & Pashler, 2007; Huang
et al., 2007; Treisman & Gelade, 1980), and a capacity limit,
which determines the maximum amount of information that
can be ultimately encoded. Such a dual source of limit is asso-
ciated with other high-level cognitive functions, such as work-
ing memory storage (Bays, Gorgoraptis, Wee, Marshall, &
Husain, 2011). Experiment 3 examined the capacity limit of
ensemble perception independently of its encoding limit, by
varying the exposure durations of stimulus arrays. If increased
exposure durations could not further improve the capacity limit,

Fig. 4 Experiment 2 procedure. An example trial in the pre-cue condition
(a) and in the post-cue condition (b). During the flash display in both
conditions, one circle from each set disappeared for 200 ms (white circles

indicate the positions of the circles that disappeared and are not shown in
the array). (Color figure online)

Fig. 5 Experiment 2 results. RMSE based on probed set mean (RMSES)
or on the size of the flashed circle in the probed set (RMSEF) in the pre-
cue and the post-cue conditions. (* indicates p < .05 between pre-cue and
post-cue RMSES; error bars reflect ±1 SEM)
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then the bottleneck of ensemble perception would more likely
be due to an internal capacity limit than to the encoding limit.

Participants and procedure

Sixty-six new participants (42 females,Mage = 20.7 years, SD
= 2.7 years) were randomly assigned to three exposure dura-
tion conditions (500 ms, 1,500 ms, and 2,000 ms; N = 22 in
each condition). The procedure was identical to that in
Experiment 1, except for changes in exposure duration. Data
from Experiment 1 (1,000 ms) was reused for comparison.

Results and discussion

The RMSE is shown in Fig. 6a–d for the 500-ms, 1,000-ms,
1,500-ms, and 2,000-ms conditions. For all exposure condi-
tions, post-cue RMSE was significantly higher than pre-cue
RMSE at set sizes ≥3, ts(21) ≥ 2.64, ps ≤ .015, ds ≥ 0.56 for set
sizes three to eight in all four exposure conditions. For the

1,000-ms condition (Experiment 1), a marginal difference oc-
curred at set sizes ≥2, t(21) = 1.76, p = .092, d = 0.38. The two-
set capacity limit of ensemble perception was reliably ob-
served at different exposure durations. Importantly, extending
the exposure duration beyond 1,000 ms did not increase the
capacity limit. Its invariance to exposure time suggests that the
capacity limit we observed in Experiment 1 (1,000-ms
exposure) was not due to the encoding limit but rather
stemmed from an internal resource constraint.

Experiment 4

Finally, we investigated the capacity of object perception un-
der the same pre-cue and post-cue paradigm (the Bobject per-
ception task^), and compared it to the capacity of ensemble
perception (Experiment 1, the Bensemble perception task^).
Since ensemble perception allows encoding of objects that
are inaccessible individually (e.g., due to crowding), hence

Fig. 6 RMSE in Experiment 3 with different exposure durations. a–d
RMSE with the 500-ms, 1,000-ms, 1,500-ms, and 2,000-ms exposure
durations, respectively. (*p < .05, †p < .10 for difference between pre-

cue and post-cue RMSE.) e Difference between pre-cue and post-cue
RMSE (post-cue − pre-cue) in the four exposure conditions
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allowing a great amount of information about objects to be
encoded, we hypothesized that the capacity of individual ob-
ject perception might not exceed that of ensemble perception.

Participants and procedure

Twenty-two new participants (17 females, Mage = 20.0 years,
SD = 2.1 years) completed the experiment. The stimuli were
similar to those in Experiment 1, except that each set now
contained only one circle, so that the entire display contained
between one and eight circles. The circles were randomly
assigned to an invisible 5 × 7 grid. The procedure was identi-
cal to that in Experiment 1 (see Fig. 7): Each trial started with a
central fixation cross for 1,000 ms, which might be filled with
a specific color that indicated which circle would be probed
(pre-cue condition), or hollow with a white outline and the
probed circle would not be known until after the array disap-
peared (post-cue condition). After the cue, an array with one to
eight circles, each in a unique color, appeared for 1,000 ms,
and participants were instructed to remember the size of a
specific circle (pre-cue condition) or every circle (post-cue
condition). The array was then replaced by a 500 ms white-
noise mask, followed by a probe circle in a specific color.
Participants reported the size of the circle in that color in the
stimulus array. A total of 320 trials were completed by each

participant. Analyses of RMSE followed the same procedure
as in Experiment 1.

Results and discussion

As before, ANOVA on RMSE (see Fig. 8) showed significant
main effects of set size, F(7, 147) = 14.89, p < .001, η2p = 0.41,

and cue condition, F(1, 21) = 145.40 p < .001, η2p = 0.87, as

well as an interaction, F(7, 147) = 16.26, p < .001, η2p = 0.44.

Paired-sample t tests showed that post-cue RMSEwas reliably
greater than pre-cue RMSE at set sizes ≥2, t(21) = 0.34, p =
.740, d = 0.07 for set size one; ts(21) ≥ 3.00, ps ≤ .007, ds ≥
0.64 for set sizes ≥2.

To compare the performance in the ensemble perception
task (Experiment 1) and the object perception task
(Experiment 4), we computed the ratio of post-cue RMSE over
pre-cue RMSE at each set size (see Fig. 8), and ran a 2 (task
condition: ensemble vs. object perception) × 8 (set size: one to
eight) mixed ANOVA. Task condition significantly influenced
performance, F(1, 42) = 5.26, p = .027, η2p = 0.11, which was

due to a greater overall RMSE ratio in the object perception
task than in the ensemble perception task, t(338.89) = 2.77, p =
.006, d = 0.30, 95% CI [0.06, 0.34]. Set size had a main effect
on performance, F(7, 294) = 14.05, p < .001, η2p = 0.25. The

Fig. 7 Experimental procedure of Experiment 4. An example trial in the
pre-cue condition (a) and in the post-cue condition (b). In each trial, the
array contained one to eight sets of circles, each set containing one circle.
In the pre-cue example trial, the cyan fixation cross indicated the mean

size of the cyan circle would be probed later; and in the post-cue example
trial, the fixation cross was hollow and the set to be probed was not
known in advance. (Color figure online)

Fig. 8 Results of Experiment 4. a RMSE in the pre-cue and the post-cue conditions. b RMSE ratio in the ensemble perception task (Experiment 1,
dashed line) and in the object perception task (Experiment 4, solid line). (*p < .05, †p = .103, error bars reflect ±1 SEM)
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interaction effect was nonsignificant, F(7, 294) = 1.65, p = .121,
η2p = 0.04. Independent-samples t tests revealed a significant

difference between ensemble and object RMSE ratios at set size
eight, t(31.51) = 2.77, p = .009, d = 0.84, marginally at set size
five, t(38.40) = 1.67, p = .103, d = 0.50, and nonsignificant at the
other set sizes (ps ≥ 0.325, ds ≤ 0.30). One interpretation of these
results is that, compared with individual object perception, en-
semble perception of a multiset display achieved a lower noise
level. Taken together, ensemble perception had a capacity at least
as large as that of individual object perception and conferred a
noise-reduction mechanism for encoding large stimulus sets.

General discussion

The goal of the current study was to examine the capacity limit
of ensemble perception of multiple spatially intermixed sets.
Experiment 1 showed that observers could accurately estimate
the mean size of circles from maximally two sets. Experiment
2 suggested that their performance was robust against atten-
tion bias to individual objects in a set. With varying exposure
durations, Experiment 3 showed that the two-set capacity limit
was possibly due to internal resource limits, rather than an
encoding speed limit. Experiment 4 showed that under our
paradigm, the capacity of ensemble perception was at least
as large as that of individual object perception.

Different capacity limits

Our finding of a two-set capacity for ensemble perception was in
line with the two-set or three-set capacity for multiset enumera-
tion (Halberda et al., 2006; Poltoratski & Xu, 2013) and visual
working memory of mean size of circles (Im & Chong, 2014).
However, this capacity limit was apparently lower than the three-
object or four-object limits for visual working memory (Luck &
Vogel, 1997; Zhang & Luck, 2008), and multiple target tracking
(Pylyshyn & Storm, 1988; review: Cavanagh & Alvarez, 2005).
One possible explanation is due to the different paradigms for
measuring capacity in those studies and ours.

To infer the capacity for working memory of objects,
Zhang and Luck (2008) assumed the response error (differ-
ence between the reported color and the target color) follows a
uniform-Gaussian mixture model. That is, if the target value
has not been encoded, participants can only make a random
guess when it is probed. Thus, their response would follow a
uniform distribution, bounded by the maximally and minimal-
ly possible response values. In contrast, if the target value has
been encoded, participants may then report the target value
with Gaussian noise. Using this method, they were able to
separate capacity of working memory (in terms of how many
objects can be held) and noise in representation.

In additional analyses (see Appendix 2), we fit a uniform-
Gaussian model to the response error (reported size – target

Fig. 9 a Guess probability (Pg) and (b) standard deviation (SD) at each set size-by-cue condition in Experiment 1. Pre-cue and post-cue Pg differed
significantly at set sizes ≥5, showing a four-set capacity for ensemble perception. (*p < .05, †p < .10, error bars reflect ±1 SEM)

Fig. 10 aGuess probability (Pg) and (b) standard deviation (SD) at each condition in Experiment 2. Confirming findings in Experiment 1, capacity limit
for ensemble perception occurred at set size four. (*p < .05, †p < .10, error bars reflect ±1 SEM)
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size) in the ensemble perception tasks (Experiments 1–3) or
the object perception task (Experiment 4), for the pre-cue and
post-cue conditions independently. We estimated the probabil-
ity of randomguess (probability of theuniformdistribution), and
the precision of encoded set means (standard deviation of the
gaussiandistribution).Thecapacity limitwasdefinedas themax-
imumnumber of sets or objects beyondwhich pre-cue and post-
cue guess probabilities would significantly differ. Remarkably,
we found a four-set capacity limit for ensemble perception in all
Experiments 1, 2, and 3, and a four-object capacity limit for

Experiment 4. This suggests convergence of capacity limits be-
tweenensembleperception andavariety of other cognitive func-
tions, such as workingmemory (Zhang&Luck, 2008).

However, it should be noted that certain assumptions of the
uniform-Gaussian model, as outlined in Zhang and Luck
(2008), might be violated under our paradigm. Zhang and
Luck (2008) had a circular space of response (a 360° color
wheel). Each allowable response value is thus equally likely to
be chosen if the right answer is not encoded. However, the
allowable response in our experiments lies in a linear,

Fig. 11 Guess probability (Pg) at each exposure condition. Capacity limit was reliably four sets with an exposure duration ≥1,000ms. (*p < .05, †p < .10,
error bars reflect ±1 SEM)

Fig. 12 Standard deviation (SD) at each exposure duration of Experiment 3. (*p < .05, †p < .10, error bars reflect ±1 SEM)
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bounded space; depending on what value the observers would
choose when they missed the right answer, the probability of
an allowable response value being chosen might or might not
be uniformly distributed.

RMSE, on the other hand, gives us a picture of the capacity
limit in terms of how many ensembles (or objects) can be
formed, as well as the precision in representations in an inte-
grated manner. It thus seems to be a valid and informative
measure to our purpose. Future studies may seek to detail
the relationship between the number and precision of encoded
ensembles (Im & Chong, 2014; Solomon, 2010).

Robustness of capacity against attention bias

In Experiment 2, we observed biasing participants’ attention
to one circle in a set did not significantly skew their estima-
tion of the set mean. This is seemingly at odds with previous
findings of mean size estimation biased toward the attended
individual set member (Chong & Treisman, 2005b; de
Fockert & Marchant, 2008), which might predict a greater
noise level and hence a lower capacity in Experiment 2. One
possible explanation would be the inevitability and automa-
ticity of ensemble perception, despite bottom-up attention
bias to individual objects. Its automaticity is evidenced by
studies in which summary statistics were not required, but
were still computed and biased task performance (Brady &
Alvarez, 2011; Parkes et al., 2001). On the other hand, while
previous studies often directed attention to a single item
(Chong & Treisman, 2005b; de Fockert & Marchant,
2008), our Experiment 2 biased attention to one circle in
each set, dispersed across the whole display. This might
have in fact encouraged global attention to the whole stim-
ulus array, which is shown to facilitate ensemble perception
(Chong & Treisman, 2005b).

Relationship between working memory of features
and ensemble perception

Poltoratski and Xu (2013) showed that visual working
memory of the feature that defines the set (color in their

case) was a limiting factor for the enumeration task in
Halberda et al. (2006). In their experiments, participants
were asked to enumerate spatially intermixed sets, and to
remember all color types in the sets, either as a separate
task or simultaneously with the enumeration task. They
found that maximally 2.5 colors could be remembered,
and two sets could be enumerated. Since observers must
remember the colors before enumerating the sets associ-
ated with the colors, the authors argued that working
memory capacity for multiple colors constrained the num-
ber of sets that could be enumerated. The two-set capacity
of ensemble perception in our study is compatible with
the 2.5-color capacity in Poltoratski and Xu (2013).
Working memory for the color types presented in the ar-
ray might also be required, hence constraining how many
mean sizes the participants could encode and report.

Efficiency of ensemble perception

Under our paradigm, ensemble perception has a greater capac-
ity than individual object perception. Moreover, the ratio of
RMSE (post-cue RMSE divided by pre-cue RMSE at each set
size) in the ensemble perception task was in fact lower than in
the object perception task overall.

One implication of these findings is that, although
ensemble perception involves greater noise with respect
to the target per se within the limit of its capacity (com-
pared with object perception), it provides a mechanism
for encoding and storing information about more objects
(a greater capacity), and scales better for perception of
large stimulus sets beyond the capacity limit (a lower
post-to-pre RMSE ratio). This finding is in line with
previous studies showing that when individual objects
are not accessible for precise encoding due to crowding,
diversion of attention, or brief exposure, ensemble repre-
sentations can still be encoded and reported with a better
precision than individual objects (Alvarez, 2011; Ariely,
2001; Chong & Treisman, 2005a).

Another way to characterize the relationship between
ensemble and individual object perception is to see

Fig. 13 Guess probability (Pg) and standard deviation (SD) in Experiment 5. Capacity limit for object perception occurred at set size four. (*p < .05, †p <
.10, error bars reflect ±1 SEM)
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whether they share the same pool of cognitive resources,
which can be done by including both ensemble stimuli
and single-circle stimuli in a trial. This would allow us
to examine whether ensemble representations are indis-
tinguishable from individual object representations.

Limitations and future directions

One limitation of the current study is that, the compari-
sons between exposure durations in Experiment 3 were
performed using a between-subjects design; similarly,
comparisons between individual and ensemble representa-
tions in Experiment 4 were also between subjects.
Although using within-subjects designs may lend these
experiments additional power, we derived the capacity
limits from within-subject difference between the pre-
cue and post-cue conditions in each experiment, which
minimized the random between-subjects effects .
Therefore, our current between-subjects comparisons
could still offer valid results.

It should also be noted that the perceived mean size may or
may not be the arithmetic linear mean, but rather on a power
scale, and the exponent for the power function varies for dif-
ferent types of features (Chong & Treisman, 2003; Da Silva,
1985; Teghtsoonian, 1965). Readers should thus be careful
extending our results to other feature dimensions.

Finally, we also note that using a mask comprising of ran-
dom colored dots would be a better option than a grayscale
mask with white noise, which could have interfered with the
estimation of capacity limit.

Future studies can examine whether the capacity limit of
ensemble perception observed in the current study is general-
izable to other feature domains, using other probing methods
(e.g., discrimination tasks). Since ensemble perception could
occur in a hierarchical manner (i.e., different levels of
summaries are extracted in parallel; Emmanouil & Treisman,
2008; Haberman, Brady, & Alvarez, 2015), and spatial orga-
nization of items interferes with perceptual efficiency and
memory storage (Alvarez & Cavanagh, 2005; Im & Chong,
2014), future studies can seek to illustrate how these factors
would expand or constrain the capacity limit for ensemble
perception.

Conclusion

The current study contributes to the literature on ensemble
perception in four important ways. First, we extended beyond
past studies that primarily focused on single-ensemble percep-
tion and examined the limits of perceiving multiple ensem-
bles. Second, we demonstrated a two-set capacity limit of
ensemble perception of multiple spatially intermixed sets,
and showed its robustness against bottom-up attention bias
to an individual object in a set. Third, we showed that

ensemble perception was limited by an internal resource con-
straint, rather than the speed of encoding. Finally, comparing
ensemble and individual object perception suggests ensemble
perception might provide a greater cognitive capacity and a
noise-reduction mechanism for large amounts of inputs.
Taken together, our results demonstrated that ensemble per-
ception is a resource-limited cognitive process that enables
efficient processing of visual information. Understanding
properties of ensemble perception helps reveal how the visual
system extracts and abstracts goal-related information from a
complex environment.
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Appendix 1 Supplemental statistics
for Experiment 2

Table 1 Partial correlation in Experiment 2. Second column shows the
partial correlation of estimation and size of the flashed circle in the probed
set, after controlling for size of the probed set mean. (*p < .05, †p <. 10)

Subject Partial correlation p

1 −0.03 .614

2 0.05 .358

3 0.30 <.001*

4 −0.02 .679

5 0.00 .950

6 0.04 .449

7 −0.09 .127

8 0.01 .929

9 0.04 .526

10 0.10 .069†

11 −0.03 .647

12 −0.01 .925

13 −0.02 .766

14 −0.03 .604

15 0.03 .592

16 0.02 .711

17 0.12 .034*

18 0.15 .008*

19 −0.07 .208

20 −0.07 .213

21 0.46 <.001*

22 0.01 .920
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Appendix 2 Mixture modeling results

Here we adopted the uniform-Gaussian mixture modeling in
Zhang and Luck (2008) to the analysis of capacity limit for
ensemble perception in four experiments.

Method

We assumed the signed error in each trial i follows a uniform-
normal mixture distribution:

p θið Þ ¼ Pg*U a; bð Þ þ 1−Pg
� �

*N μ;σ2
� �

: ð3Þ

In this model, Pg is the probability of guessing at random.
A random guess follows a uniform distribution U a; bð Þ with a
lower-bound a and an upper-bound b. Since values of a and b
differ from trial to trial depending on the true set mean, they
are heuristically estimated using the smallest and the largest
signed errors respectively, for each participant. With a proba-
bility of (1 − Pg), the probed set mean can be successfully
reported with noise, captured by a Gaussian distribution
N μ;σ2ð Þ. Since the expected error in this case is zero, so μ
is fixed at zero. Precision of response is indicated by SD = σ.
Therefore, for each participant and each experimental condi-
tion c, there are two parameters to be estimated (Pc

g and sd
c) by

minimizing the negative log likelihood:

argmin
Pc
g ;sd

c
∑
i¼1

nc

−logp θið Þ; s:t:Pc
g ≥0; sd

c≥0; ð4Þ

where nc is the number of trials in experimental condition c,
and p(θi) is defined by Eq. 2. Optimization of Eq. 3 is done
using the Nelder–Mead algorithm (Nelder & Mead, 1965)
over a range of different initial values in search for the global
minimum within a reasonable value range for each parameter.
To empirically evaluate the goodness of fit for each model, we
resampled nc data points from the fitted mixture distribution,
refitted the mode, and computed the minimized negative log
likelihood (hereafter termed Bsimulated negative log
likelihood^). This procedure was repeated 200 times, and
the p value indicating the goodness of fit was computed as
the proportion of the simulated negative log likelihoods that
were greater than the negative log likelihood for the actual
data (Kingdom & Prins, 2010). A p value of less than .05
indicates that the actual data significantly deviate from the
fitted mixture distribution.

Best-fitting parameters for the mixture models offer an al-
ternative metric for identifying the capacity limit. Zhang and
Luck (2008) measured the probability that an item is remem-
bered (Pm), and defined the capacity of working memory as
the maximum number of objects S* beyond which Pm would
drop significantly. Analogous to this, in our experiments, we
defined the capacity limit of ensemble perception as the

maximum set-size S* beyond which the guess probability Pg

in the pre-cue and post-cue conditions would be reliably dif-
ferent under a paired-samples t test (two-tailed).

Results

Experiment 1

We estimated the guess probability Pg and the standard devi-
ation SD for each participant in each Cue × Set Size condition,
using the signed error. Figure 9a–b show the average Pg and
SD, respectively. The uniform-normal mixture model provid-
ed good fit to the data (.270 ≤ ps ≤ .960). A 2 (cue condition) ×
8 (set size) repeated-measures ANOVAwas run on Pg. A main
effect of cue condition was observed, F(1, 21) = 5.24, p =
.033, ηp

2 = .20, which was due to a higher Pg in the post-
cue condition, t(175) = 4.50, p < .001, d = 0.34, 95% CI
[0.03, 0.08]. A main effect of set size, F(7, 147) = 8.42, p <
.001, ηp

2 = .29, and an interaction, F(7, 147) = 5.63, p < .001,
ηp

2 = .21, were also observed. Paired-sample t tests revealed
significantly higher post-cue Pg at set sizes ≥5, ts(21) ≤ 1.44,
ps ≥ .165, ds ≤ 0.31, for set sizes up to four; ts(21) ≥ 2.18, ps ≤
.041, ds ≥ 0.46, for set sizes five to eight. Hence, there was a
higher probability of random guess in the post-cue condition,
when the stimulus array contained more than four sets.

For the estimation precision SD, a 2 (cue condition) × 8 (set
size) repeated-measures ANOVA revealed a main effect of
cue condition, F(1, 21) = 46.62, p < .001, ηp

2 = .69, which
was driven by a higher post-cue SD, t(175) = 9.51, p < .001, d
= 0.72, 95% CI [0.33, 0.50]. A main effect of set size, F(7,
147) = 3.76, p < .001, ηp

2 = .15, and an interaction, F(7, 147)
= 2.94, p = .007, ηp

2 = .12, were observed. There were signif-
icant differences in SD between the two cue conditions at most
set sizes, ts(21) ≥ 2.37, ps ≤ .027, ds ≥ 0.51, except set size
one, t(21) = 1.38, p = .181, d = 0.29, and marginally at set size
four, t(21) = 1.9,4 p = .066, d = 0.41. The analyses of Pg and
SD suggest that within the four-set limit, the reduced accuracy
at set sizes two, three, and four measured by RMSE (see
Experiment 1) was driven by a lower encoding precision,
rather than by a higher guess probability.

Experiment 2

Experiment 2 deliberately biased participants’ attention to an
individual circle in each set by briefly flashing the circle. It
aimed to examine how robust the capacity limit of ensemble
perception would be, against attention bias.

As in Experiment 1, we modeled the set mean-based signed
error with the uniform-normal mixture distribution (goodness-
of-fit p values were between 0.230 and 0.940), and examined
the guess probability Pg (Fig. 10a) and precision SD (Fig. 10b).
For Pg, a repeated-measures ANOVA revealed a main effect of
cue condition, F(1, 21) = 5.45, p = .030, ηp

2 = .21, with the
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pre-cue Pg being significantly lower than the post-cue Pg,
t(175) = 4.69, p < .001, d = 0.35, 95% CI [0.03, 0.07]. A main
effect of set size, F(7, 147) = 17.93, p < .001, ηp

2 = .46, and an
interaction, F(7, 147) = 5.61, p < .001, ηp

2 = .21, were also
observed. Paired-sample t tests showed greater post-cue Pg at
set sizes ≥5, ts(21) ≥ 2.35, ps ≤ .029, ds ≥ 0.50, but not set sizes
≤4, ts(21) ≤ 1.04, ps ≥ .310, ds ≤ 0.22, suggesting a four-set
limit in ensemble perception. These results were consistent with
those in Experiment 1, despite the deliberate attention bias.

A two-way repeated-measures ANOVA on SD showed a
main effect of cue condition, F(1, 21) = 49.92, p < .001, ηp

2 =
.70, with pre-cue SD being lower than post-cue SD, t(21) =
9.54, p <.001, d = 0.72, 95% CI [0.31, 0.48]. There was also a
main effect of set size, F(7, 147) = 7.32, p < .001, ηp

2 = .26,
and an interaction, F(7, 147) = 7.18, p < .001, ηp

2 = .25.
Paired-sample t tests revealed significant differences in SD
between the two cue conditions at set sizes ≥3, ts(21) ≤ 0.45,
ps ≥ .353, ds ≤ 0.20 for set sizes one and two; ts(21) ≥ 3.54, ps
≤ .002, ds ≥ 0.76 for set sizes ≥3. Consistent with Experiment
1, within the four-set limit the reduced accuracy at set sizes
three and four seemed to be driven by lower encoding preci-
sion, rather than by a higher guess probability. Experiment 2
confirms the capacity limit in Experiment 1, and suggested
ensemble capacity was robust against attention to individual
objects in a set.

Experiment 3

In this experiment, we examined how varying exposure dura-
tions of the encoding array would affect the capacity limit of
ensemble perception. Four exposure durations were tested:
500 ms, 1,000 ms (reusing data from Experiment 1), 1,500
ms, and 2,000 ms.

The uniform-normal model fitted well to the data at all
exposure durations (500 ms: 0.285 ≤ ps ≤ 0.995; 1000 ms:
0.270 ≤ ps ≤ 0.960; 1,500 ms: 0.280 ≤ ps ≤ 0.930; 2,000 ms:
0.175 ≤ ps ≤ 0.970). A repeated-measures ANOVA was con-
ducted on guess probabilities Pg (Fig. 11). Main effects of cue
condition and set size were observed for all exposure dura-
tions, cue condition: Fs(1, 21) ≥ 5.21, ps ≤ .033, ηp

2 ≥ .20; set
size: Fs(7, 147) ≥ 8.42, ps < .001, ηp

2 ≥ .29.
In Experiment 1, when set sizes increased to five and be-

yond, Pg in post-cue trials reliably differed from that in post-
cue trials (Fig. 11, 500-ms condition). In the current experi-
ment, when exposure duration decreased to 500 ms, post-cue
Pg was at least marginally different (at p < .100) from pre-cue
Pg at set sizes ≥3, ts(21) ≥ 1.87, ps ≤ .075, ds ≥ 0.40, except at
set size seven, t(21) = 1.32, p = .200, d = 0.28. Post-cue Pgwas
not different from pre-cue Pg at set sizes ≤2, (ts(21) ≤ 0.96, ps
≥ .346, ds ≤ 0.20. Possibly, 500 ms was not sufficient to reach
the maximum ensemble representation capacity. This bottle-
neck could be driven by either the speed of set individuation,
or that of mean computation, or a combination of both.

On the other hand, when the exposure duration increased to
1,500 ms, post-cuePg significantly differed from pre-cue Pg at
set sizes ≥5, ts(21) ≥ 2.17, ps ≤ .042, ds ≥ .46, but not at set
sizes ≤4, ts(21) ≤ 0.60, ps ≥ .556, ds ≤ 0.13 (see Fig. 11, 1,500-
ms condition). Increasing the exposure duration to 2,000 ms
did not alter this trend, except that the difference at set size five
now becomemarginally significant, t(21) = 1.75, p = .094, d =
0.37; the difference was significant at set sizes six to eight,
ts(21) ≥ 3.13, ps ≤ .005, ds ≥ 0.67, but not at set sizes one to
four, ts(21) ≤ 1.02, ps ≥ .321, ds ≤ 0.22 (see Fig. 11, 2,000-ms
condition). In addition, difference between pre-cue and post-
cue SDwas observed for set sizes three to eight at all exposure
durations (see Fig. 12).

Experiment 4

The uniform-normal model provided good fit to the data
(0.170 ≤ ps ≤ 0.965). Analyses of the guess probability Pg

(see Fig. 13a) showed that pre-cue and post-cue Pg were sig-
nificantly different at set sizes ≥6, ts(21) ≥ 2.37, ps ≤ .028, ds ≥
0.50, and marginally different at set size five, t(21) = 1.76, p =
.094, d = 0.37, but not at set sizes two to four, ts(21) ≤ 0.38, ps
≥ .706, ds ≤ 0.08. Curiously, pre-cue/post-cue difference at set
size eight was significant, t(21) = −2.17, p = .041, d = 0.46.
This was, however, driven by a low post-cuePg, which did not
suggest a capacity limit was reached. Despite this, since a
higher probability of random guess in the post-cue condition
was still consistently observed at set sizes ≥5, we concluded
that individual representation had a four-item capacity limit.
This limit coincided with those in Experiments 1 to 3, and was
consistent with previous studies that suggested a capacity of
three or four items for visual working memory (Luck &Vogel,
1997). We also examined the standard deviation SD (see Fig.
13b). Similar to the previous experiments, difference between
post-cue and pre-cue SD occurred at set sizes three to eight,
ts(21) ≥ 4.58, ps < .001, ds ≥ 0.98, but not at set sizes one or
two, ts(21) ≤ 1.51, ps ≥ .146, ds ≤ 0.26.
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